已知f(x)=x2+x+c,且f[f(x)]=f(x2+x+1)

(1)設(shè)g(x)=f[f(x)],求g(x)的解析式;

(2)設(shè)(x)=g(x)-λf(x),試問:是否存在實(shí)數(shù)λ,使得(x)在(-∞,-1)上是減函數(shù),并且在(-1,-)上是增函數(shù).

答案:
解析:

  解  (1)因?yàn)閒(x)=x2+x+c,且f[f(x)]=f(x2+x+1),所以

  (x2+x+c)2+x2+x+c+c=(x2+x+1)2+x2+x+1+c,

  (2c-2)x2+(2c-2)x+c2+c-2=0,故c=1,

  所以  g(x)=f[f(x)]=x4+2x3+4x2+3x+3.

  (2)假設(shè)存在實(shí)數(shù)λ,使得(x)在(-∞,-1)上是減函數(shù),并且在(-1,-)上是增函數(shù).

  (x)=g(x)-λf(x)

     =x4+2x3+4x2+3x+3-λ(x2+x+1)

     =x4+2x3+(4-λ)x2+(3-λ)x+(3-λ),

  (x)=4x3+6x2+2(4-λ)x+(3-λ).

  (x)在(-∞,-1)上是減函數(shù),并且在(-1,-)上是增函數(shù)可得(-1)=0,

  所以-4+6-8+2λ+3-λ=0,解得λ=3.

  (x)=4x3+6x3+2x2=2x(2x+1)(x+1).

  ∴當(dāng)x∈(-∞,-1)時(shí),(x)=4x3+6x3+2x2=2x(2x+1)(x+1)<0,

  此時(shí)(x)在(-∞,-1)上是減函數(shù);

  當(dāng)x∈(-1,-)時(shí),(x)=4x3+6x3+2x2=2x(2x+1)(x+1)>0,

  此時(shí)(x)在(-1,-)上是增函數(shù).

  存在實(shí)數(shù)λ=3,使得(x)在(-∞,-1)上是減函數(shù),并且在(-1,-)上是增函數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江西省德興一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)
已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲線y=g(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;
(3)若當(dāng)x=1時(shí),函數(shù)y=g(x)取得極值,確定y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三單元測(cè)試文科數(shù)學(xué)試卷 題型:解答題

已知f(x)=x2-2x+1,g(x)是一次函數(shù),且f[g(x)]=4x2,求g(x)的解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆度遼寧省沈陽(yáng)市高三數(shù)學(xué)質(zhì)量檢測(cè)試卷 題型:解答題

已知f(x)=x2+2x-5,x∈[tt+1],若f(x)的最小值為h(t),寫出h(t)的表達(dá)式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省南通市高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:填空題

已知f(x)=x2axb,滿足f(1)=0,f(2)=0,則f(-1)=      ▲     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

                                                                                                                              

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x).

(1)求f(x)的解析式;

(2)若曲線y=g(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;

(3)若當(dāng)x=1時(shí),函數(shù)y=g(x)取得極值,確定y=g(x)的單調(diào)區(qū)間.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案