任意的|m|≤2,函數(shù)f(x)=mx2-2x+1-m恒為負,則x的取值范圍為   
【答案】分析:變換主元,把m作為主元,x看成系數(shù),即可求解.
解答:解:∵任意的|m|≤2,函數(shù)f(x)=mx2-2x+1-m恒為負,
∴任意的|m|≤2,(x2-1)m-2x+1<0恒成立,
設(shè)g(m)=(x2-1)m-2x+1,則任意的|m|≤2,g(m)<0恒成立


<x<
故答案為
點評:本題考查恒成立問題,考查解不等式,考查學(xué)生分析轉(zhuǎn)化問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列條件的函數(shù)f(x)的全體:(1)當x∈[0,+∞)時,函數(shù)值為非負實數(shù);(2)對于任意的s、t,都有f(s)+f(t)≤f(s+t);在三個函數(shù)f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,屬于集合M的是
f1(x)=x
f1(x)=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知集合M是滿足下列條件的函數(shù)f(x)的全體:(1)當x∈[0,+∞)時,函數(shù)值為非負實數(shù);(2)對于任意的s、t,都有f(s)+f(t)≤f(s+t);在三個函數(shù)f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,屬于集合M的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省遂寧市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是     (寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案