【題目】“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”)是現(xiàn)在商家一種常見促銷手段.今年“雙十一”期間,甲、乙、丙、丁四位顧客在商場購物時,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位顧客對游戲中獎結果進行了預測,預測結果如下:
甲說:“我或乙能中獎”;
乙說:“丁能中獎”;
丙說:“我或乙能中獎”;
丁說:“甲不能中獎”.
游戲結束后,這四位同學中只有一位同學中獎,且只有一位同學的預測結果是正確的,則中獎的同學是( )
A.甲B.乙C.丙D.丁
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,射線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行
(1)以小蟲爬行時間為參數(shù),寫出射線的參數(shù)方程;
(2)求小蟲在曲線內(nèi)部逗留的時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體;在定義域內(nèi)存在實數(shù)t,使得.
(1)判斷是否屬于集合M,并說明理由;
(2)若屬于集合M,求實數(shù)a的取值范圍;
(3)若,求證:對任意實數(shù)b,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
女 | 18 | ||
合計 |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學期望.
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計了春節(jié)前后50天該海鮮的日需求量(,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30元.假設商店該海鮮每天的進貨量為14公斤,商店銷售該海鮮的日利潤為元.
(1)求商店日利潤關于日需求量的函數(shù)表達式.
(2)根據(jù)頻率分布直方圖,
①估計這50天此商店該海鮮日需求量的平均數(shù).
②假設用事件發(fā)生的頻率估計概率,請估計日利潤不少于620元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次數(shù)學考試中,從甲、乙兩個班各抽取10名學生的數(shù)學成績進行統(tǒng)計分析,兩個班樣本成績的莖葉圖如圖所示.
(1)用樣本估計總體,若根據(jù)莖葉圖計算得甲乙兩個班級的平均分相同,求的值;
(2)從甲班的樣本不低于90分的成績中任取2名學生的成績,求這2名學生的成績不相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經(jīng)過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點,為橢圓上一點,且.
(1)求橢圓的標準方程;
(2)設直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線于、兩點,當最小時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com