在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖1).將△AEF、△CFP分別沿EF、PF折起到△A1EF和△C1FP的位置,使二面角A1-EF-B和C1-PF-B均成直二面角,連結A1B、A1P、EC1(如圖2)
(1)求證:A1E⊥平面BEP;
(2)設正△ABC的邊長為3,以
EB
,
EF
,
EA
為正交基底,建立空間直角坐標系.
①求點C1的坐標;
②直線EC1與平面C1PF所成角的大;
③求二面角B-A1P-F的余弦值.
精英家教網(wǎng)
分析:(1)由已知易得∠A1EB為二面角A1-EF-B的平面角.且此二面角為直二面角,進而由面面垂直的性質定理得到A1E⊥平面BEP;
(2)由題意知,A1(0,0,1),B(2,0,0),F(xiàn)(0,
3
,0),
①過P、C1分別作BE、PF的垂線,垂足為G、H.可得G為EB中點,H為EG中點,進而得到P,C1的坐標
②求出向量
EF
,
FC1
,進而根據(jù)
EF
FC1
=0,結合向量垂直的充要條件得到EF⊥FC1,再由EF⊥PF,可得
EF
是平面C1PF的一個法向量,
代入向量夾角公式,可得直線EC1與平面C1PF所成角
③求出平面A1BP的一個法向量和平面A1PF的一個法向量,代入向量夾角公式,可得答案.
解答:證明:(1)在圖1中,AE:EB=CF:FA=1:2
∴AF=2AE而∠A=60°,
∴EF⊥AE
在圖2中,A1E⊥EF,BE⊥EF,
∴∠A1EB為二面角A1-EF-B的平面角.
由題設條件知此二面角為直二面角,
∴A1E⊥BE,
又BE∩EF=E
∴A1E⊥平面BEF,
即 A1E⊥平面BEP
解:(2)由題意知,A1(0,0,1),B(2,0,0),F(xiàn)(0,
3
,0),
過P、C1分別作BE、PF的垂線,垂足為G、H.
①可得G為EB中點,H為EG中點,
∴G(1,0,0),H(
1
2
,0,0)
而P,C1的縱坐標與F相同,C1的豎坐標為縱坐標的一半
從而可得P(1,
3
,0).
C1
1
2
3
3
2

EF
=(0,
3
,0),
FC1
=(
1
2
,0,
3
2

EF
FC1
=0,即EF⊥FC1
而EF⊥PF,所以
EF
是平面C1PF的一個法向量,
又cos<
EF
,
EC1
>=
3
3
•2
=
3
2
∴<
EF
,
EC1
>=
π
6

故直線EC1與平面C1PF所成角為
π
3

A1B
=(2,0,-1),
BP
=(-1,
3
,0),設平面A1BP的一個法向量為
m
=(x1,y1,z1
于是有
2x1-z1=0
-x1+
3
y1=0
,取x1=1,得
m
=(1,
3
3
,2).
同理可求得平面A1PF的一個法向量
n
=(0,1,
3

cos<
m
,
n
>=
7
3
3
4
3
3
•2
=
7
8
,所求二面角與這個夾角互補,
所以二面角B-A1P-F的余弦值為-
7
8
點評:本題考查的知識點是有空間向量求平面間的夾角,建立空間坐標系將空間線線垂直及二面角轉化為向量垂直及向量夾角問題是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

197、已知結論“在正三角形ABC中,若D是邊BC中點,G是三角形ABC的重心,則AG:GD=2:1”,如果把該結論推廣到空間,則有命題
“在正四面體ABCD中,若M是底面BCD的中心,O是正四面體ABCD的中心,則AO:OM=3:1.”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在正三角形ABC中,E、F分別是AB、AC邊上的點,滿足
AE
EB
=
CF
FA
=
1
2
(如圖1).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B、A1C. (如圖2)求證:A1E⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點,G,J分別為AF,DE的中點.將△ABC沿DE,EF,DF折成三棱錐以后,GJ與DE所成角的度數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將
△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三角形ABC中,D是BC上的點,AB=3,BD=2,則
AB
AD
 

查看答案和解析>>

同步練習冊答案