13.已知sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,θ為鈍角,求cosθ的值.

分析 判斷角的范圍,求出余弦函數(shù)值,然后利用兩角和與差的三角函數(shù)化簡(jiǎn)求解即可.

解答 解:sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,θ為鈍角,可知θ∈($\frac{π}{2}$,$\frac{3π}{4}$).
cos(θ+$\frac{π}{4}$)=-$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=-$\frac{2\sqrt{2}}{3}$.
cosθ=cos((θ+$\frac{π}{4}$)-$\frac{π}{4}$)=cos(θ+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(θ+$\frac{π}{4}$)sin$\frac{π}{4}$=$-\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}+\frac{1}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}-4}{6}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合P=[-4,4],Q=[-2,2],下列對(duì)應(yīng)x→y,不表示P到Q的映射的是( 。
A.2y=xB.y2=$\frac{1}{2}$(x+4)C.y=$\frac{1}{4}$x2-2D.x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A={-1≤x≤2},B={x|x≤a},若A∪B=B.則實(shí)數(shù)a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知集合A={x|-3≤x≤4},集合B={x|2m-1<x<m+1}
(1)當(dāng)m=-3時(shí),求集合A∩B
(2)當(dāng)B⊆A時(shí),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)B?A時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知U=R,A={t|t=a2-4a+5,a∈R},B={y|y=4x2+4x+5,a∈R},求∁RA,∁RB,∁AB.
(2)A={x|-2<x<-1或x>1},B={x|a≤x≤b},A∪B={x|x>-2},A∩B={x|1<x≤3},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)M═{y|y=x2+1},N={y|y=x+1},則M∩N={y|y≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.選用適當(dāng)?shù)姆椒ū硎鞠铝懈骷希?br />(1)被4除余數(shù)為1的所有自然數(shù)組成的集合;
(2)一-、二象限的點(diǎn)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在數(shù)列{an}和{bn}中,a1=b1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,bn+1=bn+$\frac{1}{{a}_{n}}$.
(1)求證:{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)求{an}和{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知數(shù)列{an}與{bn}都是等差數(shù)列,且$\underset{lim}{n→∞}$$\frac{{a}_{n}}{_{n}}$=3,則$\underset{lim}{n→∞}$$\frac{{a}_{1}+{a}_{2}+…+{a}_{2n}}{_{1}+_{2}+…+_{3n}}$的值為(  )
A.$\frac{9}{4}$B.$\frac{4}{3}$C.$\frac{4}{3}$或2D.$\frac{4}{3}$或$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案