【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用克的藥劑,藥劑在血液中的含量隨著時間小時變化的函數(shù)關(guān)系式近似為,其中

若病人一次服用9克的藥劑,則有效治療時間可達(dá)多少小時?

若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.

【答案】(1);(2)

【解析】

可得函數(shù)y的解析式,可令,分段解不等式求并集即可;

由當(dāng),可得函數(shù)y的解析式,化簡,結(jié)合函數(shù)的單調(diào)性,可得最小值.

(1)由題意,當(dāng)可得

當(dāng)時,,解得,此時

當(dāng)時,,解得,此時

綜上可得,

所以病人一次服用9克的藥劑,則有效治療時間可達(dá)小時;

當(dāng)時,,

均為減函數(shù),

可得遞減,即有,

,可得,可得m的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求實數(shù)m的值;

2)若l1l2,求l1l2之間的距離d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求圓心在直線2x-y-3=0上,且過點A(5,2)和點B(3,一2)的圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點. (Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,且點在橢圓上,為坐標(biāo)原點

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)過橢圓上異于其頂點的任一點,作圓的切線,切點分別為不在坐標(biāo)軸上),若直線的橫縱截距分別為,求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計

大學(xué)組

中學(xué)組

合計

注:,其中.

(2)若參賽選手共萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:

②命題“若,則”的否命題是“若,則”;

③若“”為真命題,“”為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣1|+|2x+3|.
(1)若f(x)≥m對一切x∈R都成立,求實數(shù)m的取值范圍;
(2)解不等式f(x)≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x﹣y=1與圓Γ:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓Γ上運動,且位于直線l的兩側(cè),則四邊形ABCD面積的最大值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案