【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為 .
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.
【答案】
(1)解:由最低點為 得A=2.
由x軸上相鄰的兩個交點之間的距離為 得 = ,
即T=π,
由點 在圖象上的
故 ∴
又 ,∴
(2)解:∵ ,∴
當(dāng) = ,即 時,f(x)取得最大值2;當(dāng)
即 時,f(x)取得最小值﹣1,
故f(x)的值域為[﹣1,2]
【解析】(1)根據(jù)最低點M可求得A;由x軸上相鄰的兩個交點之間的距離可求得ω;進而把點M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函數(shù)的解析式.(2)根據(jù)x的范圍進而可確定當(dāng) 的范圍,根據(jù)正弦函數(shù)的單調(diào)性可求得函數(shù)的最大值和最小值.確定函數(shù)的值域.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用分層抽樣的方法從某校學(xué)生中抽取一個容量為60的樣本,其中高二年級抽取20人,高三年級抽取25人,已知該校高一年級共有800人,則該校學(xué)生總數(shù)為人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: 與軸的交點是橢圓: 的一個焦點.
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點,是否存在使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個單調(diào)遞增區(qū)間可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過A(0,1),B(3,4),C(6,1)三點.
(1)求圓C的方程;
(2)若圓C與直線x﹣y+a=0交于A,B兩點,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ∥ ,試求x與y滿足的關(guān)系式;
(2)滿足(1)同時又有 ⊥ ,求x,y的值及四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com