【題目】如圖,在四棱錐中,,,,,平面平面.
(1)求證:平面;
(2)求證:平面;
(3)在棱上是否存在一點E,使得二面角的大小為?若存在,求出的值;若不存在,請說明理由.
【答案】(1)證明見解析(2)證明見解析(3)存在;
【解析】
(1)由線面平行判定定理證明即可;
(2)由勾股定理得出,進而得,再由面面垂直的性質(zhì)定理即可證明平面;
(3)建立空間直角坐標系,利用向量法求解即可.
證明:(1)因為,
平面,
平面,
所以平面.
(2)取的中點N,連接.
在直角梯形中,
易知,且.
在中,由勾股定理得.
在中,由勾股定理逆定理可知.
又因為平面平面,
且平面平面,
所以平面.
(3)取的中點O,連接,.
所以,
因為平面,
所以平面.
因為,
所以.
如圖建立空間直角坐標系,
則,,,,
,,.
易知平面的一個法向量為.
假設在棱上存在一點E,使得二面角的大小為.
不妨設(),
所以,
設為平面的一個法向量,
則 即
令,,所以.
從而.
解得或.
因為,所以.
由題知二面角為銳二面角.
所以在棱上存在一點E,使得二面角的大小為,
此時.
科目:高中數(shù)學 來源: 題型:
【題目】科技創(chuàng)新能力是決定綜合國力和國際競爭力的關(guān)鍵因素,也是推動經(jīng)濟實現(xiàn)高質(zhì)量發(fā)展的重要支撐,而研發(fā)投入是科技創(chuàng)新的基本保障,下圖是某公司從2010年到2019年這10年研發(fā)投入的數(shù)據(jù)分布圖:
其中折線圖是該公司研發(fā)投入占當年總營收的百分比,條形圖是當年研發(fā)投入的數(shù)值(單位:十億元).
(I)從2010年至2019年中隨機選取一年,求該年研發(fā)投入占當年總營收的百分比超過10%的概率;
(II)從2010年至2019年中隨機選取兩個年份,設X表示其中研發(fā)投入超過500億元的年份的個數(shù),求X的分布列和數(shù)學期望;
(III)根據(jù)圖中的信息,結(jié)合統(tǒng)計學知識,判斷該公司在發(fā)展的過程中是否比較重視研發(fā),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學的學習和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值點;
(2)定義:若函數(shù)的圖像與直線有公共點,我們稱函數(shù)有不動點.這里。,若,如果函數(shù)存在不動點,求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:過點,且橢圓的離心率為,直線:與橢圓相交于、兩點,線段的中垂線交橢圓于、兩點.
(1)求橢圓的標準方程;
(2)求線段長的最大值;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),在矩形中,,在邊上,.沿,將和折起,使平面和平面都與平面垂直,如圖(2).
(1)試判斷圖(2)中直線與的位置關(guān)系,并說明理由;
(2)求平面和平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列四個結(jié)論:
①函數(shù)的最小正周期是;
②函數(shù)在區(qū)間上是減函數(shù);
③函數(shù)的圖象關(guān)于直線對稱;
④函數(shù)的圖象可由函數(shù)的圖象向左平移個單位得到其中所有正確結(jié)論的編號是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:在長方體中,,點是線段上的一個動點,則①的最小值等于__________;②直線與平面所成角的正切值的取值范圍為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com