【題目】如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)變軌進(jìn)入以月球球心為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點(diǎn)第二次變軌進(jìn)入仍然以為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在點(diǎn)第三次變軌進(jìn)入以為圓心的圓形軌道Ⅲ繞月飛行,若用和分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用和分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①;②;③;④.
其中正確式子的序號(hào)是( )
A.①③B.②③C.①④D.②④
【答案】B
【解析】
結(jié)合圖形,比較橢圓上一點(diǎn)到其一焦點(diǎn)的距離最大值、最小值是否相同,離心率是否相同,即可進(jìn)行判定.
對(duì)于①,因?yàn)闄E圓中的是橢圓上的點(diǎn)到焦點(diǎn)的最大距離,所以,所以①錯(cuò)誤;對(duì)于②,因?yàn)闄E圓中的是橢圓上的點(diǎn)到焦點(diǎn)的最小距離,所以,所以②正確;對(duì)于③,④,因?yàn)橛蓤D可以看出橢圓Ⅰ比Ⅱ的離心率大,所以④是錯(cuò)誤的,③正確.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年“雙十一”期間,某商場(chǎng)舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),顧客消費(fèi)每滿(mǎn)1000元可參加一次抽獎(jiǎng)(例如:顧客甲消費(fèi)930元,不得參與抽獎(jiǎng);顧客乙消費(fèi)3400元,可以抽獎(jiǎng)三次)。如圖1,在圓盤(pán)上繪制了標(biāo)有A,B,C,D的八個(gè)扇形區(qū)域,每次抽獎(jiǎng)時(shí)由顧客按動(dòng)按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時(shí)指針會(huì)隨機(jī)停在圓盤(pán)上的某一個(gè)位置,顧客獲獎(jiǎng)的獎(jiǎng)次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線(xiàn)粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對(duì)應(yīng)的獎(jiǎng)金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.
(I)某顧客只抽獎(jiǎng)一次,設(shè)該顧客抽獎(jiǎng)所獲得的獎(jiǎng)金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;
(II)如圖2,該商場(chǎng)統(tǒng)計(jì)了活動(dòng)期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎(jiǎng)金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎(jiǎng)金總數(shù)和仍不足100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像相鄰兩條對(duì)稱(chēng)軸間的距離為,且,則以下命題中為假命題的是( )
A.函數(shù)在上是增函數(shù).
B.函數(shù)圖像關(guān)于點(diǎn)對(duì)稱(chēng)
C.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到
D.函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長(zhǎng)度;
(2)若綠化區(qū)域改造成本為10萬(wàn)元/,新建道路成本為10萬(wàn)元/.設(shè)(),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,國(guó)內(nèi)很多評(píng)價(jià)機(jī)構(gòu)經(jīng)過(guò)反復(fù)調(diào)研論證,研制出“增值評(píng)價(jià)”方式。下面實(shí)例是某市對(duì)“增值評(píng)價(jià)”的簡(jiǎn)單應(yīng)用,該市教育評(píng)價(jià)部門(mén)對(duì)本市所高中按照分層抽樣的方式抽出所(其中,“重點(diǎn)高中”所分別記為,“普通高中”所分別記為),進(jìn)行跟蹤統(tǒng)計(jì)分析,將所高中新生進(jìn)行了統(tǒng)的入學(xué)測(cè)試高考后,該市教育評(píng)價(jià)部門(mén)將人學(xué)測(cè)試成績(jī)與高考成績(jī)的各校平均總分繪制成了雷達(dá)圖.點(diǎn)表示學(xué)校入學(xué)測(cè)試平均總分大約分,點(diǎn)表示學(xué)校高考平均總分大約分,則下列敘述不正確的是( )
A.各校人學(xué)統(tǒng)一測(cè)試的成績(jī)都在分以上
B.高考平均總分超過(guò)分的學(xué)校有所
C.學(xué)校成績(jī)出現(xiàn)負(fù)增幅現(xiàn)象
D.“普通高中”學(xué)生成績(jī)上升比較明顯
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,橢圓的左、右頂點(diǎn)分別為,是橢圓上一點(diǎn),記直線(xiàn)的斜率為、,且有.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同兩點(diǎn)和,且滿(mǎn)足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市春節(jié)大酬賓,購(gòu)物滿(mǎn)100元可參加一次抽獎(jiǎng)活動(dòng),規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎(jiǎng)品.已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.若活動(dòng)當(dāng)天小明在該超市購(gòu)物消費(fèi)108元,按照活動(dòng)規(guī)則,他可參加一次抽獎(jiǎng),則小明獲得A袋中的獎(jiǎng)品的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)途車(chē)站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測(cè)量,l1,l2的夾角為45°,OP與l1的夾角滿(mǎn)足tan=(其中0<θ<),現(xiàn)要經(jīng)過(guò)P修條直路分別與道路l1,l2交匯于A,B兩點(diǎn),并在A,B處設(shè)立公共自行車(chē)停放點(diǎn).
(1)已知修建道路PA,PB的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)A,B之間的距離;
(2)考慮環(huán)境因素,需要對(duì)OA,OB段道路進(jìn)行翻修,OA,OB段的翻修單價(jià)分別為n元/千米和n元/千米,要使兩段道路的翻修總價(jià)最少,試確定A,B點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com