精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.

【答案】
(1)解:聯立得:

解得: ,

∴圓心C(3,2).

若k不存在,不合題意;

若k存在,設切線為:y=kx+3,可得圓心到切線的距離d=r,即 =1,

解得:k=0或k=﹣ ,

則所求切線為y=3或y=﹣ x+3


(2)解:設點M(x,y),由MA=2MO,知: =2 ,

化簡得:x2+(y+1)2=4,

∴點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,

又∵點M在圓C上,C(a,2a﹣4),

∴圓C與圓D的關系為相交或相切,

∴1≤|CD|≤3,其中|CD|= ,

∴1≤ ≤3,

解得:0≤a≤


【解析】(1)聯立直線l與直線y=x﹣1解析式,求出方程組的解得到圓心C坐標,根據A坐標設出切線的方程,由圓心到切線的距離等于圓的半徑,列出關于k的方程,求出方程的解得到k的值,確定出切線方程即可;(2)設M(x,y),由MA=2MO,利用兩點間的距離公式列出關系式,整理后得到點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交或相切,根據兩圓的半徑長,得出兩圓心間的距離范圍,利用兩點間的距離公式列出不等式,求出不等式的解集,即可得到a的范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(12分)

某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率。

(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.學#@

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經》和《易經》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節(jié)氣的晷影長則是按照等差數列的規(guī)律計算得出的.下表為《周髀算經》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

春分(秋分)

晷影長(寸)

135

75.5

節(jié)氣

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影長(寸)

16.0

已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經》中所記錄的驚蟄的晷影長應為__________寸.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)若函數處的切線方程為,求的值;

(II)討論方程的解的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.

(1)求橢圓的方程;

(2)若直線與直線交于點,線段的中點為,證明:點關于直線的對稱點在直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動點,ABCD是扇形的內接矩形.記∠COP=α,則矩形ABCD的面積最大是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產甲、乙兩種產品,其產量分別為45個與55個,所用原料分別為A、B兩種規(guī)格的金屬板,每張面積分別為2m2與3m2 . 用A種規(guī)格的金屬板可造甲種產品3個,乙種產品5個;用B種規(guī)格的金屬板可造甲、乙兩種產品各6個.問A、B兩種規(guī)格的金屬板各取多少張,才能完成計劃,并使總的用料面積最?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的偶函數f(x)滿足對于任意實數x,都有f(1+x)=f(1﹣x),且當0≤x≤1時,f(x)=3x+1
(1)求證:函數f(x)是周期函數;
(2)當x∈[1,3]時,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案