【題目】已知橢圓 的短軸長(zhǎng)為,右焦點(diǎn)為,點(diǎn)是橢圓上異于左、右頂點(diǎn)的一點(diǎn).

(1)求橢圓的方程;

(2)若直線與直線交于點(diǎn),線段的中點(diǎn)為,證明:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上.

【答案】(1)(2)見(jiàn)解析

【解析】試題分析:(Ⅰ)由短軸長(zhǎng)為,得,結(jié)合離心率及可得橢圓的方程;

(Ⅱ)“點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上”等價(jià)于“平分”,設(shè)出直線的方程為,可解出, 的坐標(biāo),聯(lián)立直線與橢圓的方程可得點(diǎn)坐標(biāo),分為當(dāng)軸時(shí),即可求得的角平分線所在的直線方程,可得證,當(dāng)時(shí),利用點(diǎn)到直線的距離可求出點(diǎn)到直線的距離,即可得結(jié)果.

試題解析:解:(Ⅰ)由題意得 解得, 所以橢圓的方程為

(Ⅱ)“點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上”等價(jià)于“平分”.

設(shè)直線的方程為,則

設(shè)點(diǎn),由,得

① 當(dāng)軸時(shí), ,此時(shí).所以

此時(shí),點(diǎn)的角平分線所在的直線,即平分

② 當(dāng)時(shí),直線的斜率為,所以直線的方程為,所以點(diǎn)到直線的距離

即點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過(guò)正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過(guò)5人”,根據(jù)連續(xù)7天的新增病倒數(shù)計(jì)算,下列各選項(xiàng)中,一定符合上述指標(biāo)的是(
①平均數(shù) ;
②標(biāo)準(zhǔn)差S≤2;
③平均數(shù) 且標(biāo)準(zhǔn)差S≤2;
④平均數(shù) 且極差小于或等于2;
⑤眾數(shù)等于1且極差小于或等于1.
A.①②
B.③④
C.③④⑤
D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為(

A.7
B.9
C.11
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),若0≤θ≤ 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問(wèn)工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu),才能獲得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD||PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某造船公司年造船量是20,已知造船x艘的產(chǎn)值函數(shù)為R(x)3 700x45x210x3(單位:萬(wàn)元),成本函數(shù)為C(x)460x5 000(單位:萬(wàn)元)

(1)求利潤(rùn)函數(shù)P(x);(提示:利潤(rùn)=產(chǎn)值-成本)

(2)問(wèn)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 )的左右焦點(diǎn)分別為, ,下頂點(diǎn)為,直線的方程為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn), 到直線的距離為,且三角形的面積為.

(1)求橢圓的方程;

(2)若斜率為的直線與橢圓相切,過(guò)焦點(diǎn) 分別作, ,垂足分別為, ,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, , , , , , ,且平面

1)設(shè)平面平面,求證:

2)求證:

3)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案