已知函數(shù)f(x)=x3-ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=1或x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[-2,5]時,f(x)<c2恒成立,求c的取值范圍.
分析:(1)根據(jù)所給的函數(shù)的解析式,對函數(shù)求導(dǎo),使得導(dǎo)函數(shù)等于0,得到關(guān)于a,b的關(guān)系式,解方程組即可,寫出函數(shù)的解析式.
(2)要求一個恒成立問題,f(x)<c2恒成立,即c2-c>x3-6x2+9x,只須c2-c>(x3-6x2+9x)max.設(shè)g(x)=x3-6x2+9x,下面利用導(dǎo)數(shù)求其最大值即可.
解答:解:(1)∵函數(shù)f(x)在x=1或x=3處取得極值
∴f'(1)=0,f'(3)=0…(1分)
又∵f'(x)=3x2-2ax+b
f′(1)=3-2a+b=0
f′(3)=27-6a+b=0
…(2分)
∴a=6,b=9…(3分)
經(jīng)檢驗,當(dāng)a=6,b=9時,函數(shù)f(x)在x=1或x=3處取得極值    …(4分)
∴a=6,b=9…(5分)
(2)由(1)得所求的函數(shù)解析式為f(x)=x3-6x2+9x+c;
∵當(dāng)x∈[-2,5]時,f(x)<c2恒成立,
∴x3-6x2+9x+c<c2,對x∈[-2,5]恒成立,
∴c2-c>x3-6x2+9x,∴c2-c>(x3-6x2+9x)max
設(shè)g(x)=x3-6x2+9x,
g′(x)=3x2-12x+9=3(x-3)(x-1),
列表:
x (-2,1) 1 (1,3) 3 (3,5)
g′(x) + 0 - 0 +
g(x) 極大值4 極小值0
且g(-2)=-50,g(5)=20,
故函數(shù)g(x)的g(x)最大值=f(5)=20,
∴c2-c>20,解得c<-4或c>5.
故c的取值范圍是:c<-4或c>5.…(13分)
點(diǎn)評:考查函數(shù)的極值的應(yīng)用,考查函數(shù)的恒成立問題,本題解題的關(guān)鍵是寫出函數(shù)的最值,再利用不等式或方程思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案