精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中:底面ABCD,底面ABCD為梯形,,,且,BC=1,M為棱PD上的點。

(Ⅰ)若,求證:CM∥平面PAB;

(Ⅱ)求證:平面平面PAB;

(Ⅲ)求直線BD與平面PAD所成角的大小.

【答案】)見解析()見解析(Ⅲ)30°

【解析】

(Ⅰ)過點MMHAD,交PAH,連接BH,BCMH為平行四邊形,CMBH,從而得證;

(Ⅱ)要證平面平面PAB,即證;

(Ⅲ)取PA的中點為N,連接BN,由(Ⅱ)可知BN⊥平面PAD,即∠BDN為直線BD與平面PAD所成角。

解:(Ⅰ)證明:過點MMHAD,交PAH,連接BH,

因為,所以

MHAD,ADBC,所以HMBC

所以BCMH為平行四邊形,所以CMBH

BH平面PABCM平面PAB,

所以CM∥平面PAB

)∵底面ABCD,AD平面ABCD

,又,且

,又平面PAD

平面平面PAB;

(Ⅲ)取PA的中點為N,連接BN,

,∴BN⊥PA,連接DN

又平面平面PAB,故BN⊥平面

則∠BDN為直線BD與平面PAD所成角

此時,BN=,BD=

∴sin∠BDN=,即∠BDN=30°

∴求直線BD與平面PAD所成角的大小30°.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.

1)若米,米,求的值;

2)若體育館側面的最大寬度不超過75米,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,在曲線與直線的交點中,若相鄰交點距離的最小值為,則的最小正周期為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統(tǒng)計量的值.

(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程;

(2)已知這種產品的年利潤zx,y的關系為,根據(1)中的結果回答下列問題:

①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?

②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為

參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,OACBD的交點,E為棱PB上一點.

1)證明:平面EAC⊥平面PBD;

2)若PD∥平面EAC,求三棱錐P-EAD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

(Ⅰ)當a=1時,求函數的單調區(qū)間:

(Ⅱ)求函數的極值;

(Ⅲ)若函數有兩個不同的零點,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,,其前n項和,則下列說法正確的個數是(

①數列是等差數列;②;③.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求函數處的切線方程;

(Ⅱ)若對任意的恒成立,求的取值范圍;

(Ⅲ)當時,設函數.證明:對于任意的,函數有且只有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,,分別是,的中點,上且.

(I)求證:;

(II)求直線與平面所成角的正弦值;

(III)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案