【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

(1)求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意.

【答案】(1);(2)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(3)詳見(jiàn)解析.

【解析】

試題分析:(1)根據(jù)題意分析可能曲線在點(diǎn)處的切線與軸平行,等價(jià)于,從而;(2)由(1)可知,只需考慮分子的正負(fù)性即可,而上單調(diào)遞減,再由,故當(dāng)時(shí),,,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(3),這是一指對(duì)相結(jié)合的函數(shù),混在一起考慮其單調(diào)性比較復(fù)雜,因此考慮分開研究各自的取值情況:記,令,得,

當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,

,即.

,上單調(diào)遞減,

,即,綜合,可知,.

試題解析:(1),依題意,為所求;

(2)由(1)可知,,記,,

上單調(diào)遞減,又,

當(dāng)時(shí),,,單調(diào)遞增;當(dāng)時(shí),,,單調(diào)遞減,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為

(3),

,,,令,得,

當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,

,即.

,,上單調(diào)遞減,

,即,綜合可知,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),設(shè)g(x)=(x2﹣2x)ex , 求證:對(duì)任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩坐標(biāo)系中取相同的單位長(zhǎng)度,已知曲線的方程為,點(diǎn).

(1)求曲線的直角坐標(biāo)方程和點(diǎn)的直角坐標(biāo);

(2)設(shè)為曲線上一動(dòng)點(diǎn),以為對(duì)角線的矩形的一邊平行于極軸,求矩形周長(zhǎng)的最小值及此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過(guò)適當(dāng)圖象的變換得到函數(shù)的圖象, 寫出變換過(guò)程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=lgx4 , g(x)=4lgx
B.
C. ,g(x)=x+2
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx. (Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為t1小時(shí),其余工人加工完乙型裝置所需時(shí)間為t2小時(shí).

設(shè)f(x)=t1t2

(Ⅰ)求f(x)的解析式,并寫出其定義域;

(Ⅱ)當(dāng)x等于多少時(shí),f(x)取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中秋節(jié)即將到來(lái),為了做好中秋節(jié)商場(chǎng)促銷活動(dòng),某商場(chǎng)打算將進(jìn)行促銷活動(dòng)的禮品盒重新設(shè)計(jì).方案如下:將一塊邊長(zhǎng)為10的正方形紙片剪去四個(gè)全等的等腰三角形, , 再將剩下的陰影部分折成一個(gè)四棱錐形狀的包裝盒,其中重合于點(diǎn), 重合, 重合, 重合, 重合(如圖所示).

(1)求證:平面平面;

(2)已知,過(guò)于點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案