3.函數(shù)$f(x)=\frac{cosx}{x}$的圖象大致為(  )
A.B.C.D.

分析 先判斷函數(shù)的奇偶性,再判斷函數(shù)值的變化趨勢(shì).

解答 解:f(-x)=$\frac{cos(-x)}{-x}$=-$\frac{cosx}{x}$=-f(x),
∴函數(shù)f(x)為奇函數(shù),則圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故排A,B,
當(dāng)x=$\frac{π}{3}$時(shí),f($\frac{π}{3}$)=$\frac{\frac{1}{2}}{\frac{π}{3}}$=$\frac{6}{π}$
故選:D

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,關(guān)鍵是判斷函數(shù)的奇偶性和函數(shù)值得變化趨勢(shì),屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程;
(2)討論函數(shù)f(x)在$[0,\frac{π}{2}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若a=log1664,b=lg0.2,c=20.2,則( 。
A.c<b<aB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知x,y∈R,i為虛數(shù)單位,若x-1+yi=$\frac{2i}{1+i}$,則x+y的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≥-2}\\{3x-2y≤3}\end{array}\right.$,則z=x+2y的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,∠B=$\frac{π}{6}$,AC=1,點(diǎn)D在邊AB上,且DA=DC,BD=1,則∠DCA=$\frac{π}{3}$或$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某市市民月收入ξ(單位:元)服從正態(tài)分布N(3000,σ2),且P(ξ<1000)=0.1962,則P(3000≤ξ≤5000)=( 。
A.0.3038B.0.3924C.0.6076D.0.8038

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{m}$=1的離心率為$\frac{5}{4}$,則m=( 。
A.7B.6C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知p:x2-4x+3≤0,q:f(x)=$\frac{{x}^{2}+1}{x}$存在最大值和最小值,則p是q的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案