【題目】已知拋物線與直線只有一個(gè)公共點(diǎn),點(diǎn)是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的方程;
(2)①若,求證:直線過(guò)定點(diǎn);
②若是拋物線上與原點(diǎn)不重合的定點(diǎn),且,求證:直線的斜率為定值,并求出該定值.
【答案】(1)(2)①證明見(jiàn)解析②證明見(jiàn)解析,
【解析】
(1)聯(lián)立拋物線與直線方程,再根據(jù)二者只有一個(gè)交點(diǎn)可得,即可求解;
(2)①設(shè),,由直線斜率公式代入可得,由直線的斜率公式可得,進(jìn)而將代入直線的方程,化簡(jiǎn)后即可求解;②設(shè),,利用直線斜率公式代入中化簡(jiǎn)可得,即,再根據(jù)直線斜率公式求解即可.
解:(1)與聯(lián)立得,
因?yàn)閽佄锞與直線只有一個(gè)公共點(diǎn),
所以,即,
所以拋物線的方程為.
(2)①證明:設(shè),,則,
所以,又,
所以直線的方程為,
即,
當(dāng)時(shí),所以直線過(guò)定點(diǎn).
②證明:設(shè),,
則,
即,
所以,則,
所以直線的斜率為,
因?yàn)?/span>為定點(diǎn),
所以直線的斜率為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求函數(shù)在上的最小值;
(2)若函數(shù)在上存在零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知等邊的邊長(zhǎng)為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.
(1)求證:平面平面;
(2)給出三個(gè)條件:①;②二面角大小為;③.在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題的條件中,并作答:在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.注:如果多個(gè)條件分別解答,按第一個(gè)解答給分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(1)若f(x)≥|m﹣1|恒成立,求實(shí)數(shù)m的最大值M;
(2)在(1)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正△ABC邊長(zhǎng)為3,點(diǎn)M,N分別是AB,AC邊上的點(diǎn),AN=BM=1,如圖1所示.將△AMN沿MN折起到△PMN的位置,使線段PC長(zhǎng)為,連接PB,如圖2所示.
(Ⅰ)求證:平面PMN⊥平面BCNM;
(Ⅱ)若點(diǎn)D在線段BC上,且BD=2DC,求二面角M﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱,底面為等腰梯形,;,側(cè)面底面.
(1)在側(cè)面中能否作一條直線使其與平行?如果能,請(qǐng)寫(xiě)出作圖過(guò)程并給出證明;如果不能,請(qǐng)說(shuō)明理由;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,,是自然對(duì)數(shù)的底數(shù).
(1)若曲線在點(diǎn)處的切線為,求的值;
(2)求函數(shù)的極大值;
(3)設(shè)函數(shù),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com