【題目】正方體ABCD - A1B1C1D1的棱長(zhǎng)為2 E、FG分別為BC、CC1BB1的中點(diǎn),則(

A.直線與直線AF垂直B.直線A1G與平面AEF平行

C.平面截正方體所得的截面面積為D.點(diǎn)C與點(diǎn)G到平面AEF的距離相等

【答案】BC

【解析】

對(duì)選項(xiàng)A,取中點(diǎn),則在平面上的投影,由不垂直,得不垂直,故A錯(cuò)誤.對(duì)選項(xiàng)B,取的中點(diǎn),連接,,易證平面平面,從而得到平面,故B正確.對(duì)選項(xiàng)C,連接,,得到

平面為平面截正方體所得的截面,再計(jì)算其面積即可得到C正確,對(duì)選項(xiàng)D,利用反正法即可得到D錯(cuò)誤.

對(duì)選項(xiàng)A,如圖所示:

中點(diǎn),連接,.

在平面上的投影,

因?yàn)?/span>不垂直,所以不垂直,故A錯(cuò)誤.

對(duì)選項(xiàng)B,取的中點(diǎn),連接,如圖所示:

因?yàn)?/span>,平面,平面,所以平面,

因?yàn)?/span>,平面,平面,所以平面

又因?yàn)?/span>平面,

所以平面平面.

因?yàn)?/span>平面,所以平面,故B正確.

對(duì)選項(xiàng)C,連接,如圖所示:

因?yàn)?/span>,所以平面為平面截正方體所得的截面.

,,

,所以四邊形為等腰梯形,

高為.

C正確.

對(duì)選項(xiàng)D,連接,如圖所示:

假設(shè)點(diǎn)與點(diǎn)到平面的距離相等,即平面必過的中點(diǎn),

不是的中點(diǎn),則假設(shè)不成立,故D錯(cuò)誤.

故選:BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知,直線與曲線交于, 兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,若的公共點(diǎn)為,且是曲線的中心,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教育主管部門到一所中學(xué)檢查高三年級(jí)學(xué)生的體質(zhì)健康情況,從中抽取了名學(xué)生的體質(zhì)測(cè)試成績(jī),得到的頻率分布直方圖如圖1所示,樣本中前三組學(xué)生的原始成績(jī)按性別分類所得的莖葉圖如圖2所示.

(Ⅰ)求, , 的值;

(Ⅱ)估計(jì)該校高三學(xué)生體質(zhì)測(cè)試成績(jī)的平均數(shù)和中位數(shù);

(Ⅲ)若從成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人重新進(jìn)行測(cè)試,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間中,下列命題正確的是

A.如果一個(gè)角的兩邊和另一角的兩邊分別平行,那么這兩個(gè)角相等

B.兩條異面直線所成的有的范圍是

C.如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行

D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,,∠ABC=BCD=90°,EPB的中點(diǎn)。

1)證明:CE∥面PAD.

2)若直線CE與底面ABCD所成的角為45°,求四棱錐P-ABCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,橢圓與直線相切于點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于、兩點(diǎn)( 不是長(zhǎng)軸端點(diǎn)),且以為直徑的圓過橢圓軸正半軸上的頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C ,過點(diǎn)的直線l的參數(shù)方程為: (t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).

(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)|PM |,|MN||PN|成等比數(shù)列,求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《漢字聽寫大會(huì)》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽寫測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;

(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案