【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,若的公共點(diǎn)為,且是曲線的中心,求的面積.

【答案】1, .2.

【解析】試題分析:曲線的參數(shù)方程利用平方法消去參數(shù),得其普通方程,將, 代入普通方程并化簡(jiǎn),可得其極坐標(biāo)方程;(2)將代入極坐標(biāo)方程可得,根據(jù)極徑的幾何意義利用韋達(dá)定理可得,再根據(jù)點(diǎn)到直線距離公式及三角形面積公式可得結(jié)果.

試題解析:1由曲線的參數(shù)方程消去參數(shù)得其普通方程為.

, 代入上式并化簡(jiǎn)得其極坐標(biāo)方程為.

2代入得.

.

設(shè), ,, ,

所以.

又由1),,且由2知直線的直角坐標(biāo)方程為,所以的距離是,所以的面積.

【名師點(diǎn)晴】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式, 等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,本題這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計(jì)可用淡水資源僅占地球儲(chǔ)水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬(wàn)居民,估計(jì)全市居民中月均用水量不低于2.5噸的人數(shù),并說(shuō)明理由;

(3)若該市政府希望使的居民每月的用水不按議價(jià)收費(fèi),估計(jì)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角的對(duì)邊分別為,且成等差數(shù)列

1)若,求的面積

2)若成等比數(shù)列,試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調(diào)遞減;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

①函數(shù)y=2sin的圖象的一條對(duì)稱軸是x=;

②函數(shù)y=tanx的圖象關(guān)于點(diǎn)對(duì)稱;

③若sin=sin,則x1-x2=,其中kZ

④函數(shù),x[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).

其中正確的有____(填寫(xiě)所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

1)若函數(shù)處的切線垂直于軸,求實(shí)數(shù)的值;

2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;

3)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD - A1B1C1D1的棱長(zhǎng)為2, E、FG分別為BC、CC1、BB1的中點(diǎn),則(

A.直線與直線AF垂直B.直線A1G與平面AEF平行

C.平面截正方體所得的截面面積為D.點(diǎn)C與點(diǎn)G到平面AEF的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,若方程有2個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案