分析 由f(x)的定義域求出f(2x)的定義域,再與分母中對數(shù)式的真數(shù)大于0且不等于1聯(lián)立得答案.
解答 解:∵f(x)的定義域為[-1,1],
∴由$\left\{\begin{array}{l}{x+1>0}\\{x+1≠1}\\{-1≤2x≤1}\end{array}\right.$,解得$-\frac{1}{2}≤x≤\frac{1}{2}$且x≠0.
∴函數(shù)$g(x)=\frac{1}{{ln({x+1})}}+f({2x})$的定義域為$[-\frac{1}{2},0)∪(0,\frac{1}{2}]$.
故答案為:$[-\frac{1}{2},0)∪(0,\frac{1}{2}]$.
點評 本題考查函數(shù)的定義域及其求法,關鍵是掌握該類問題的求解方法,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x+2y-5=0 | B. | 2x-y+5=0 | C. | x-2y+5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,3) | B. | (0,3) | C. | (0,8) | D. | (-1,8) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2] | C. | (2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | $({1,\frac{3}{2}})$ | D. | $({\frac{3}{2},2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A(-1,+∞) | B. | (-1,2)∪(2,+∞) | C. | (-1,2) | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com