分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性和單調(diào)性,得出揭露.
(2)由f(A)=$\sqrt{2}$sin(2A-$\frac{π}{4}$)=1,求得sin(2A-$\frac{π}{4}$)的值,可得A的值,再利用余弦定理求得a的值.
解答 解:(Ⅰ)∵$f(x)=2sinxcosx-2{cos^2}x+1=sin2x-cos2x=\sqrt{2}sin(2x-\frac{π}{4})$,∴f(x)的最小正周期為π.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
(2)△ABC中,銳角A滿(mǎn)足f(A)=$\sqrt{2}$sin(2A-$\frac{π}{4}$)=1,∴sin(2A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
又∵A是銳角,∴$2A-\frac{π}{4}=\frac{π}{4}$,∴$A=\frac{π}{4}$.
∵b=$\sqrt{2}$,c=3,由余弦定理得${a^2}=2+9-2×\sqrt{2}×3cos\frac{π}{4}=5$,∴$a=\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,余弦定理的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-5)∪(1,+∞) | C. | (-∞,-5)∪(0,+∞) | D. | (-5,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
單價(jià)x(元) | 18 | 19 | 20 | 21 | 22 |
銷(xiāo)量y(冊(cè)) | 61 | 50 | 50 | 48 | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com