【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點(diǎn),求證:平面;

(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

【答案】(1)見解析;(2)見解析;(3)不存在這樣的點(diǎn)P.

【解析】分析I),根據(jù)面面垂直的性質(zhì)得到平面,從而可證明;(II)由于,建立空間直角坐標(biāo)利用的方向向量與平面 的法向量數(shù)量積為零可得平面 ;III)由(II)可知平面的法向量,設(shè),利用空間向量夾角余弦公式列方程可求得,從而可得結(jié)論.

詳解證明:(I)在直三棱柱中,

平面

∵平面平面,且平面平面

平面

(I)在直三棱柱中,

平面,∴

,

建立如圖所示的空間直角坐標(biāo)系,由已知可得,

,,,

設(shè)平面的法向量

的中點(diǎn),∴

平面,∴平面

(III)由(II)可知平面的法向量

設(shè)

若直線DP與平面所成的角為,

解得

故不存在這樣的點(diǎn)P,使得直線DP與平面所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過定點(diǎn)作直線與拋物線相交于、兩點(diǎn).

1)已知,若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求面積的最小值;

2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,,數(shù)列滿足,且

I)求數(shù)列的通項(xiàng)公式;

II)令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在D上的函數(shù)f(x),若滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.

(1)設(shè),判斷f(x)在上是否是有界函數(shù).若是,說明理由,并寫出f(x)所有上界的值的集合;若不是,也請(qǐng)說明理由.

(2)若函數(shù)g(x)=1+2x+a·4x在x∈[0,2]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

2)若恒成立,求的取值范圍;

3)已知,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】司機(jī)在開機(jī)動(dòng)車時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開車時(shí)使用手機(jī)的情況,交警部門調(diào)查了名機(jī)動(dòng)車司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開車時(shí)使用手機(jī)的有人,開車時(shí)不使用手機(jī)的有人;在名女性司機(jī)中,開車時(shí)使用手機(jī)的有人,開車時(shí)不使用手機(jī)的有人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開車時(shí)使用手機(jī)與司機(jī)的性別有關(guān);

開車時(shí)使用手機(jī)

開車時(shí)不使用手機(jī)

合計(jì)

男性司機(jī)人數(shù)

女性司機(jī)人數(shù)

合計(jì)

(2)以上述的樣本數(shù)據(jù)來估計(jì)總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動(dòng)車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時(shí)使用手機(jī)的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望

參考公式與數(shù)據(jù):

參考數(shù)據(jù):

參考公式

span>,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2.為了更好進(jìn)行生涯規(guī)劃,張明同學(xué)對(duì)高一一年來的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

1)若張明同學(xué)隨機(jī)選擇3門功課,求他選到物理政治兩門功課的概率;

2)試根據(jù)莖葉圖分析張明同學(xué)應(yīng)在物理和歷史中選擇哪個(gè)學(xué)科?并闡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)A,B

)若α,求線段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方體中,點(diǎn)分別是棱,上的動(dòng)點(diǎn),,直線與平面所成的角為,則△的面積的最小值是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案