17.請你設(shè)計一個計算機(jī)程序,計算點(x0,y0)到直線Ax+By+C=0的距離d.

分析 根據(jù)點到直線的距離公式,先設(shè)計算法,畫出順序結(jié)構(gòu)的框圖,即可寫出相應(yīng)的程序.

解答 解:程序如下:
INPUT“(x0,y0),AX+BY+C=0“; x0,y0,A,B,C.
   Z1=A*x0+B*y0+C.
   Z2=A^2+B^2
   d=ABS(Z1)/SQR(Z2),.
PRINT d

點評 本題考查了點到直線的距離公式,考查了設(shè)計程序框圖解決實際問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線過原點且傾斜角的正切值是$\frac{4}{5}$,則直線的方程為4x-5y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點M在雙曲線上,且$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{\sqrt{5}-1}{\sqrt{5}+3}$.則雙曲線C離心率的最大值為( 。
A.$\sqrt{5}$+2B.$\frac{\sqrt{5}+2}{2}$C.$\sqrt{5}$-1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.求值:cos$\frac{π}{5}$cos$\frac{2π}{5}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,a1=1,an=2nan-1,則an=${2}^{\frac{{n}^{2}+n-2}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.標(biāo)號為A,B,C的三個口袋,A袋中有1個紅色小球,B袋中有2個不同的白色小球,C袋中有3個不同的黃色小球,現(xiàn)從中取出2個小球.
(1)若取出的兩個球顏色不同,有多少種取法?
(2)若取出的兩個顏色相同,有多少種取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}中,a4,a2016是函數(shù)f(x)=x3-6x2+4x-1的極值點,則log${\;}_{\frac{1}{4}}$a2010=( 。
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(1)求函數(shù)y=f(-3x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知銳角△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=7,sinB+sinC=$\frac{13}{7}$sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題?x∈R,cosx≤1的真假判斷及其否定是(  )
A.真,?x0∈R,cosx0>1B.真,?x∈R,cosx>1
C.假,?x0∈R,cosx0>1D.假,?x∈R,cosx>1

查看答案和解析>>

同步練習(xí)冊答案