已知直線(xiàn)
x-2y+2=0經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S和橢圓C上位于x軸上方的動(dòng)點(diǎn),直線(xiàn),AS,BS與直線(xiàn)分別交于M,N兩點(diǎn).(Ⅰ)求橢圓C的方程;
(Ⅱ)求線(xiàn)段MN的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線(xiàn)段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說(shuō)明理由
本小題主要考查直線(xiàn)、隨圓、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2011-2012學(xué)年高二上學(xué)期期末數(shù)學(xué)理科試題 題型:044
已知直線(xiàn)x-2y+2=0經(jīng)過(guò)橢圓C:+=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線(xiàn)AS,BS與直線(xiàn)l:x=分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求證:直線(xiàn)AS與直線(xiàn)BS斜率的乘積為定值;
(3)求線(xiàn)段MN的長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線(xiàn)x+2y=2與x軸、y軸分別相交于A、B兩點(diǎn),若動(dòng)點(diǎn)P(a,b)在線(xiàn)段AB上,則ab的最大值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本小題滿(mǎn)分12分)已知直線(xiàn)x-2y+2=0經(jīng)過(guò)橢圓C:=1(>>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方
的動(dòng)點(diǎn),直線(xiàn)AS、BS與直線(xiàn)l:x=分別交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線(xiàn)段MN的長(zhǎng)度的最小值;
(3)當(dāng)線(xiàn)段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線(xiàn)x-2y+2=0經(jīng)過(guò)橢圓C:+=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線(xiàn)AS,BS與直線(xiàn)l:x=分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線(xiàn)段MN的長(zhǎng)度的最小值;
(3)當(dāng)線(xiàn)段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com