設(shè),則函數(shù)的單調(diào)遞增區(qū)間是________.

 

【答案】

【解析】

試題分析:令,因為,故,所以單調(diào)增區(qū)間為

考點:利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆河北省高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)則函數(shù)的單調(diào)遞增區(qū)間是(    )

A.                       B.

C.           D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省仙桃市高三第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共14分)已知函數(shù)其中常數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)時,若函數(shù)有三個不同的零點,求m的取值范圍;

(3)設(shè)定義在D上的函數(shù)在點處的切線方程為當(dāng)時,若在D內(nèi)恒成立,則稱P為函數(shù)的“類對稱點”,請你探究當(dāng)時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點”的橫坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù)其中常數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)時,給出兩類直線:,其中為常數(shù),判斷這兩類直線中是否存在的切線,若存在,求出相應(yīng)的的值,若不存在,說明理由.

(3)設(shè)定義在上的函數(shù)在點處的切線方程為,當(dāng)內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當(dāng)時,試問是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo),若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三12月月考理科數(shù)學(xué)卷 題型:選擇題

設(shè),若區(qū)間是函數(shù)的單調(diào)遞增區(qū)間,將的圖象按向量的方向平移得到一個新的函數(shù)的圖象,則的一個單調(diào)

遞減區(qū)間可以是

    A.        B.        C.       D.

 

查看答案和解析>>

同步練習(xí)冊答案