分析 由A與B的度數(shù)之比,得出AC大于BC,利用角平分線定理根據(jù)角平分線CD將三角形分成的面積之比為4:3,得到BC與AC之比,再利用正弦定理得出sinA與sinB之比,將B=2A代入并利用二倍角的正弦函數(shù)公式化簡,即可求出cosA的值.
解答 解:∵B=2A,
∴B>A,
∴AC>BC,
∵角平分線CD把三角形面積分成4:3兩部分,
∴由角平分線定理得:BC:AC=BD:AD=3:4,
∴由正弦定理$\frac{BC}{sinA}=\frac{AC}{sinB}$得:$\frac{sinA}{sinB}$=$\frac{3}{4}$,整理得:$\frac{sinA}{sin2A}$=$\frac{sinA}{2sinAcosA}$=$\frac{3}{4}$,
則cosA=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點(diǎn)評 此題屬于解三角形的題型,涉及的知識有:正弦定理,角平分線定理,以及二倍角的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}π$ | B. | $4\sqrt{3}π$ | C. | $2\sqrt{5}π$ | D. | $4\sqrt{5}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在x∈R,使得ex≤0 | |
B. | “x>1”是“x>2”的充分不必要條件 | |
C. | x+$\frac{1}{x}$≥2對任意正實(shí)數(shù)x恒成立 | |
D. | “p或q是假命題”“¬p為真命題”的必要不充分條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com