已知中心在坐標(biāo)原點焦點在軸上的橢圓C,其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

 

【答案】

(Ⅰ)  (Ⅱ) 存在這樣的直線,其斜率的取值范圍是

【解析】

試題分析:(Ⅰ)由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為            1分

則由長軸長等于4,即2a=4,所以a=2.                 2分

,所以,                       3分

又由于                          4分

所求橢圓C的標(biāo)準(zhǔn)方程為                   5分

(Ⅱ)假設(shè)存在這樣的直線,設(shè),的中點為

因為所以所以  ①

(i)其中若時,則,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得 ②            7分

.               8分

代入①式得,即,解得               11分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率的取值范圍是          13分

考點:橢圓方程性質(zhì)及直線與橢圓的位置關(guān)系

點評:直線與橢圓相交時常將直線與橢圓聯(lián)立方程組,利用韋達(dá)定理找到根與系數(shù)的關(guān)系,進(jìn)而將轉(zhuǎn)化為點的坐標(biāo)表示,其中要注意條件不要忽略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知中心為坐標(biāo)原點O,焦點在x軸上的橢圓的兩個短軸端點和左右焦點所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點P(0,2)的直線l與橢圓交于點A,B,當(dāng)△OAB面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知中心的坐標(biāo)原點,以坐標(biāo)軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知中心在坐標(biāo)原點焦點在x軸上的橢圓C,其長軸長等于4,離心率為
2
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點E(0,1),問是否存在直線l:y=kx+m與橢圓C交于M,N兩點,且|ME|=|NE|?若存在,求出k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省高三熱身卷數(shù)學(xué)(理)試題 題型:解答題

(本題12分)已知中心為坐標(biāo)原點O,焦點在x軸上的橢圓的兩個短軸端點和左右焦點所組成的四邊形是面積為2的正方形,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點P(0,2)的直線l與橢圓交于點A,B,當(dāng)△OAB面積最大時,求直線l的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(山東) 題型:解答題

(本小題滿分12分)已知橢圓C的中心在坐標(biāo)原點,焦點在軸上,橢圓C上的點到焦點的距離的最大值為3,最小值為1.

(I)求橢圓C的標(biāo)準(zhǔn)方程;

(II)若直線與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點.求證:直線過定點,并求出該定點的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案