【題目】[選修44:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程,并指明曲線C的形狀;

()設(shè)直線l與曲線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且OA<|OB|,求.

【答案】(1) y = 2x, 曲線C是圓心為(1,1),半徑r=1的圓(2)

【解析】試題分析:(Ⅰ) 由消去參數(shù)t,得y =2x,由,得,所以曲線C的直角坐標(biāo)方程為,即可得直線l和曲線C的直角坐標(biāo)方程,曲線C的形狀;

(Ⅱ) 聯(lián)立直線l與曲線C的方程,得,消去,得,設(shè)A、B對應(yīng)的極徑分別為,則 ,

所以即可得解.

試題解析:

(Ⅰ)由消去參數(shù)t,得y =2x,

,得,

所以曲線C的直角坐標(biāo)方程為

.

即曲線C是圓心為(1,1),半徑r=1的圓.

(Ⅱ)聯(lián)立直線l與曲線C的方程,得,消去,得

設(shè)A、B對應(yīng)的極徑分別為,則,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)是奇函數(shù).

(1)判斷函數(shù)的奇偶性,并求實(shí)數(shù)的值;

(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,D是BC的中點(diǎn)

(1)求證:平面

2).求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式在(0,+)上恒成立,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,拋物線C與直線l1的一個交點(diǎn)為,且為坐標(biāo)原點(diǎn)).

(Ⅰ)求拋物線C的方程;

(II)不過原點(diǎn)的直線l2l1垂直,且與拋物線交于不同的兩點(diǎn)AB,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的一條直徑是橢圓的長軸,過橢圓上一點(diǎn)的動直線與圓相交于點(diǎn),弦的最小值為.

(1)求圓及橢圓的方程;

(2) 已知點(diǎn)是橢圓上的任意一點(diǎn),點(diǎn)軸上的一定點(diǎn),直線的方程為,若點(diǎn)到定直線的距離與到定點(diǎn)的距離之比為,求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點(diǎn).

1)過點(diǎn)向圓引切線,求切線的方程;

2)求以點(diǎn)為圓心,且被直線截得的弦長為8的圓的方程;

3)設(shè)為(2)中圓上任意一點(diǎn),過點(diǎn)向圓引切線,切點(diǎn)為,試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請求出定點(diǎn)的坐標(biāo),并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力,某移動支付公司在我市隨機(jī)抽取了100名移動支付用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計

10

8

7

11

14

50

(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣的方法隨機(jī)抽取5名用戶.

①求抽取的5名用戶中男、女用戶各多少人;

②從這5名用戶中隨機(jī)抽取2名用戶,求抽取的2名用戶中既有男用戶又有女用戶的概率.

(2)如果認(rèn)為每周使用移動支付次數(shù)超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認(rèn)為“喜歡使用移動支付”與性別有關(guān)?

附表及公式:

查看答案和解析>>

同步練習(xí)冊答案