【題目】如圖,多面體, 是正方形, 是梯形, , , 平面, 分別為棱的中點

求證:平面平面;

求平面和平面所成銳二面角的余弦值

【答案】見解析

【解析】試題分析:(1通過證明平面,所以平面平面.(2)建立空間直角坐標系,求出平面和平面的法向量,求二面角的余弦值。

試題解析:

, 是正方形

分別為棱的中點

平面,

平面從而

中點

平面

平面

所以,平面平面

(Ⅱ)由已知, 兩兩垂直,如圖建立空間直角坐標系,

, , ,

,

平面的一個法向量為,

,

由(Ⅰ)可知平面

∴平面的一個法向量為

設平面和平面所成銳二面角為,

所以,平面和平面所成銳二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, ,

,證明平面平面;

當四棱錐的體積為且二面角為鈍角時,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對任意的,恒有,且當, .

(1)的值;

(2)求證:對任意,恒有.

(3)求證:R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實數(shù);

(2)存在一個實數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.

某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從一個面積為的半圓形鐵皮上截取兩個高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個高均為的圓柱(無底面,連接部分材料損失忽略不計).記這兩個圓柱的體積之和為

(1)將表示成的函數(shù)關系式,并寫出的取值范圍;

(2)求兩個圓柱體積之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的圖像過點,且在點處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案