【題目】以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量的隨機變量的觀測值來說,越小,判斷有關(guān)系的把握越大;其中真命題的個數(shù)為(

A.3B.2C.1D.0

【答案】C

【解析】

根據(jù)抽樣方式的特征,可判斷;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷;根據(jù)獨立性檢驗的方法和步驟,可判斷

根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故應(yīng)是系統(tǒng)抽樣,即為假命題;

兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故為真命題;

對分類變量的隨機變量的觀測值來說,越小,“有關(guān)系”的把握程度越小,故為假命題.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的極值;

2)設(shè)函數(shù),若函數(shù)恰有一個零點,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,的中點,分別是、上的動點(含端點),且滿足.運動時,下列結(jié)論中正確的個數(shù)是(

①平面平面;

②三棱錐的體積為定值;

可能為直角三角形;

④平面與平面所成的銳二面角范圍為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).

(1)求實數(shù)的值;

(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)

為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形ABCD中,EFAD,BD中點,,將沿對角線BD折起至,使平面平面BCD,則四面體中,下列結(jié)論不正確的是(

A.平面

B.異面直線CD所成的角為

C.異面直線EF所成的角為

D.直線與平面BCD所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當中點時,二面角 的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張強同學(xué)進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為

1)求張強同學(xué)三次投籃至少命中一次的概率;

2)記張強同學(xué)三次投籃命中的次數(shù)為隨機變量,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點F1(﹣1,0),F(xiàn)2(1,0),且|PF1||PF2|的等差中項,則動點P的軌跡是( 。

A. 橢圓 B. 雙曲線 C. 拋物線 D. 線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列的前項和為,數(shù)列滿足:,當時,,且,,成等比數(shù)列,.

1)求數(shù)列,的通項公式;

2)求證:數(shù)列中的項都在數(shù)列中;

3)將數(shù)列、的項按照:當為奇數(shù)時,放在前面:當為偶數(shù)時,放在前面進行“交叉排列”,得到一個新的數(shù)列:,,,,…這個新數(shù)列的前和為,試求的表達式.

查看答案和解析>>

同步練習(xí)冊答案