分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,判斷函數(shù)的單調(diào)性即可;
(Ⅱ)構(gòu)造函數(shù)g(x),通過計(jì)算發(fā)現(xiàn)g(0)=0,只需證明g(x)在[0+∞)上為增函數(shù)即可,根據(jù)函數(shù)的單調(diào)性證明即可;
(Ⅲ)結(jié)合(Ⅱ)的結(jié)論分別證明y>0和y<x即可.
解答 解:(Ⅰ)∵x>0,f(x)=eax-x,
∴f′(x)=aeax-1,
①a≤0時(shí),f′(x)<0,f(x)在(0,+∞)遞減;
②0<a<1時(shí),ln$\frac{1}{a}$>0,
令f′(x)>0,解得:x>$\frac{1}{a}$ln$\frac{1}{a}$,
令f′(x)<0,解得:0<x<$\frac{1}{a}$ln$\frac{1}{a}$,
∴f(x)在(0,$\frac{1}{a}$ln$\frac{1}{a}$)遞減,在($\frac{1}{a}$ln$\frac{1}{a}$,+∞)遞增;
③a≥1時(shí),f′(x)>0,f(x)在(0,+∞)遞增.
(Ⅱ)a=1時(shí),f(x)=ex-x,
令g(x)=ex-x-$\frac{1}{2}$x2-1,(x>0),
g′(x)=ex-1-x,g″(x)=ex-1>0,
故g′(x)在(0,+∞)遞增,
故g′(x)>g′(0)=0,
∴g(x)在(0,+∞)遞增,
∴g(x)>g(0)=0,
故f(x)>$\frac{{x}^{2}}{2}$+1.
(Ⅲ)若ex=1+x+$\frac{1}{2}$x2ey,
由(Ⅱ)得:1+x+$\frac{1}{2}$x2ey-x>$\frac{1}{2}$x2+1,
∴$\frac{1}{2}$x2(ey-1)>0,
∴ey>1=e0,
∴y>0,
由ex=1+x+$\frac{1}{2}$x2ey,
得:ey=$\frac{2{(e}^{x}-x-1)}{{x}^{2}}$,
∴y=ln$\frac{2{(e}^{x}-x-1)}{{x}^{2}}$,
∴y-x=ln$\frac{2{(e}^{x}-x-1)}{{x}^{2}}$-x=ln[2(e2-x-1)-lnx2-x<ln[2($\frac{1}{2}$x2+1-1)-lnx2-x=lnx2-lnx2-x=-x<0,
∴y-x<0,即y<x,
綜上,0<y<x.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用、函數(shù)恒成立問題以及不等式的證明,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{π}{4},\frac{π}{2})$ | B. | $(0,\frac{π}{3})$ | C. | $(\frac{π}{6},\frac{π}{4})$ | D. | $(0,\frac{π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | [-2,2] | C. | (-∞,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直 | B. | 平行 | C. | 重合 | D. | 相交但不垂直 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com