【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實(shí)施高考模式.所謂,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機(jī)選科,求選出的六科中含有語文,數(shù)學(xué),外語,物理,化學(xué)的概率.

2)新冠疫情期間,為積極應(yīng)對新高考改革,某地高一年級積極開展線上教學(xué)活動.教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450.

①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:此次測試平均成績?yōu)?/span>171分,351分以上共有57,請用你所學(xué)的統(tǒng)計(jì)知識估計(jì)甲能否獲得榮譽(yù)證書,并說明理由;

②考生丙得知他的實(shí)際成績?yōu)?/span>430分,而考生乙告訴考生丙:這次測試平均成績?yōu)?/span>201分,351分以上共有57,請結(jié)合統(tǒng)計(jì)學(xué)知識幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn)危⒄f明理由.

附:;

.

【答案】1;(2)①能,理由見解析;②無法辨別乙同學(xué)信息真假,理由見解析

【解析】

1)已經(jīng)選出五科,再從剩余三個科目中選1個科目的方法為,計(jì)算出從物理、歷史里選一門,生物、化學(xué)、思想政治、地理4門中選2門的總方案數(shù),即可得其概率.

2)①由題意可知, ,而 ,結(jié)合原則可求得的值,結(jié)合獲獎概率,并求得,比較后可求得獲獎的最低成績,即可由甲的成績得知甲能否獲得榮譽(yù)證書.

②假設(shè)乙所說為真,求得,進(jìn)而求得的值,從而確定的值,即可確定的概率.比較后即可知該事件為小概率事件,而丙已經(jīng)有這個成績,因而可判斷乙所說為假.

解:(1)設(shè)事件A:選出的六科中含有語文,數(shù)學(xué),外語,物理,化學(xué),

2)設(shè)此次網(wǎng)絡(luò)測試的成績記為X,則

①由題知,因?yàn)?/span>,且

所以,而

所以前400名的成績的最低分高于

,所以甲同學(xué)能獲得榮譽(yù)證書

②假設(shè)乙所說的為真,則

,

,所以,從而,

答案示例1:可以認(rèn)為乙同學(xué)信息為假,理由如下:

事件為小概率事件,即丙同學(xué)的成績?yōu)?/span>430是小概率事件,可認(rèn)為其不可能發(fā)生,但卻又發(fā)生了,所以可認(rèn)為乙同學(xué)信息為假;

答案示例2:無法辨別乙同學(xué)信息真假,理由如下:

事件丙同學(xué)的成績?yōu)?/span>430發(fā)生的概率雖然很小,一般不容易發(fā)生,但是還是有可能發(fā)生的,所以無法辨別乙同學(xué)信息真假.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為圓錐的頂點(diǎn),是圓錐底面的圓心,為底面直徑,是底面的內(nèi)接正三角形,上一點(diǎn),

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD為矩形,點(diǎn)EPA線段上,PC平面BDE

1)請確定點(diǎn)E的位置;并說明理由.

2)若是等邊三角形,, 平面PAD平面ABCD,四棱錐的體積為,求點(diǎn)E到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:

(II)若M為中點(diǎn),求證:平面;

(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是(

A.當(dāng)時,

B.函數(shù)3個零點(diǎn)

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的極值;

2)若函數(shù)在區(qū)間內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1(﹣c,0),F2c,0)分別為雙曲線C1a0b0)的左、右焦點(diǎn),直線l1C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸交于T(﹣5c,0),則C的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,cdR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,平面⊥平面,是以為斜邊的等腰直角三角形,,,的中點(diǎn).

1)證明:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案