已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線(xiàn)y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.
(1)圓過(guò)原點(diǎn),,設(shè)圓的方程是
令,得;令得
,即:的面積為定值。
(2)
【解析】
試題分析:(1)圓過(guò)原點(diǎn),
設(shè)圓的方程是
令,得;令得
,即:的面積為定值。
(2) , 垂直平分線(xiàn)段
,,直線(xiàn)的方程是
,解得:或
當(dāng)時(shí),圓心的坐標(biāo)為,,
此時(shí)到直線(xiàn)的距離,
圓與直線(xiàn)相交于兩點(diǎn).
當(dāng)時(shí),圓心的坐標(biāo)為,,
此時(shí)到直線(xiàn)的距離
圓與直線(xiàn)不相交,
不符合題意舍去.
圓的方程為
考點(diǎn):圓的方程及直線(xiàn)與圓相交問(wèn)題
點(diǎn)評(píng):第一問(wèn)要證三角形面積是定值首先要求出圓與坐標(biāo)軸的交點(diǎn),從而確定三角形邊長(zhǎng);第二問(wèn)由直線(xiàn)與圓相交的性質(zhì)求得參數(shù)t后要驗(yàn)證此時(shí)圓與坐標(biāo)軸是否相交,這一點(diǎn)容易忽略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 | t |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線(xiàn)y = –2x+4與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南鄭州盛同學(xué)校高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設(shè)直線(xiàn)y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
1. 已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線(xiàn)y = –2x+4與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.[來(lái)源:ZXXK]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com