已知函數(shù)在點(diǎn)處的切線方程為,且對(duì)任意的,恒成立.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求實(shí)數(shù)的最小值;
(Ⅲ)求證:().
(Ⅰ) (Ⅱ)
(Ⅲ)先證,累加即得.
解析試題分析:(Ⅰ)將代入直線方程得,∴①
,∴②
聯(lián)立,解得∴
(Ⅱ),∴在上恒成立;
即在恒成立;
設(shè),,
∴只需證對(duì)于任意的有
設(shè),
1)當(dāng),即時(shí),,∴
在單調(diào)遞增,∴
2)當(dāng),即時(shí),設(shè)是方程的兩根且
由,可知,分析題意可知當(dāng)時(shí)對(duì)任意有;
∴,∴
綜上分析,實(shí)數(shù)的最小值為.
(Ⅲ)令,有即在恒成立;
令,得
∴原不等式得證.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;函數(shù)解析式的求解及常用方法;不等式的證明.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的切線方程問(wèn)題,在曲線上某點(diǎn)處的切線的斜率就是該點(diǎn)的導(dǎo)數(shù)值,考查了導(dǎo)數(shù)在最大值和最小值中的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想和分類討論的數(shù)學(xué)思想.特別是(Ⅲ)的證明,用到了放縮法和裂項(xiàng)相消,此題屬難度較大的題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)f(x)=x2+x-.
(I)若定義域?yàn)閇0,3],求f(x)的值域;
(II)若f(x)的值域?yàn)閇-,],且定義域?yàn)閇a,b],求b-a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)求當(dāng)時(shí),函數(shù)的表達(dá)式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(II)對(duì)任意b>0,f(x)在區(qū)間[b-lnb,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)討論單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:當(dāng)時(shí),證明:。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com