A. | 2 | B. | 3 | C. | 1 | D. | 4 |
分析 由題意設(shè)扇形的半徑和弧長分別為r和l,可得2r+l=40,扇形的面積S=$\frac{1}{2}$lr=$\frac{1}{4}$•l•2r,由基本不等式即可得解.
解答 解:設(shè)扇形的半徑和弧長分別為r和l,
由題意可得2r+l=40,
∴扇形的面積S=$\frac{1}{2}$lr=$\frac{1}{4}$•l•2r≤$\frac{1}{4}$$(\frac{l+2r}{2})$2=100.
當(dāng)且僅當(dāng)l=2r=20,即l=20,r=10時取等號,
此時圓心角為α=$\frac{l}{r}$=2,
∴當(dāng)半徑為10圓心角為2時,扇形的面積最大,最大值為100.
故選:A.
點評 本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,考查了基本不等式的應(yīng)用以及學(xué)生的計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4-π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com