6.函數(shù)$f(x)=2x-\frac{9}{2-2x}(x>1)$的最小值是8.

分析 易知2x-2>0,從而化簡f(x)=(2x-2)+$\frac{9}{2x-2}$+2,從而利用基本不等式求最值即可.

解答 解:∵x>1,
∴2x-2>0,
∴f(x)=(2x-2)+$\frac{9}{2x-2}$+2≥2$\sqrt{9}$+2=8,
(當(dāng)且僅當(dāng)2x-2=$\frac{9}{2x-2}$,即x=$\frac{5}{2}$時(shí),等號(hào)成立);
故答案為:8.

點(diǎn)評(píng) 本題考查了函數(shù)的化簡與應(yīng)用及基本不等式的化簡與應(yīng)用.注意整體代換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{{{e^x}-a}}{{{e^x}+1}}$是奇函數(shù).
(1)求實(shí)數(shù)a的值.
(2)判斷f(x)在R上的單調(diào)性,并用定義證明.
(3)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈[1,2]恒成立?若存在,求出t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=3x-1,x∈[-5,2)的值域是[-16,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線AB與PQ的位置關(guān)系( 。
A.平行B.垂直C.重合D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC中,bcosB=ccosC,則△ABC的形狀為( 。
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知拋物線y2=4px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求滿足${({\frac{1}{3}})^{{x^2}-15}}$>3-2X的x的取值集合是(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是一個(gè)算法流程圖,則輸出的n為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={y|y=x2,x∈R},集合B={y|y=-x2+3x-1,x∈R}集合C為函數(shù)f(x)=$\sqrt{-{x}^{2}+4x+m-7}$的定義域.
(1)求A∩B;
(2)若A∪C⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案