分析 (1)根據(jù)離心率公式e=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,AB=$\sqrt{5}$,即$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$,及a2=b2+c2,即可求得a和b的值,求得橢圓方程;
(2)l∥AB,設(shè)l的方程為:y=-$\frac{1}{2}$x+m,△>0,求得m的取值范圍且m≠0,由x1+x2=2m,分別表示出△OCM的面積等于△ODN的面積,即可求得△OCM的面積等于△ODN的面積.
解答 解:(1)設(shè)橢圓焦距2c,依題意可知:e=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
由AB=$\sqrt{5}$,即$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$,
由a2=b2+c2,
代入即可求得a=2,b=1,
∴$\frac{{x}^{2}}{4}$+y2=1,
(2)證明:l∥AB,設(shè)l的方程為:y=-$\frac{1}{2}$x+m,
將其代入$\frac{{x}^{2}}{4}+{y}^{2}=1$,消去y,整理得:x2-2mx+2m2-2=0,
△=4m2-4(2m2-2)>0,解得:-$\sqrt{2}$<m<$\sqrt{2}$,
∵l不過(guò)原點(diǎn),
∴-$\sqrt{2}$<m<$\sqrt{2}$,m≠0,
設(shè)C(x1,y1),D(x2,y2),
∴x1+x2=2m,
:△OCM的面積S1,△ODN的面積S2,
可知:M(2m,0),N(0,m)
x2=2m-x1,
S2=$\frac{1}{2}$丨m丨•丨x2丨=$\frac{1}{2}$丨m丨•丨2m-x1丨,
S1=$\frac{1}{2}$丨2m丨•丨y1丨=丨2m丨•丨-$\frac{1}{2}$x1+m丨=$\frac{1}{2}$丨m丨丨2m-x1丨,
∴S1=S2.
△OCM的面積等于△ODN的面積.
點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì),考查直線與橢圓的位置關(guān)系,三角形面積公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3\sqrt{3}-4}{10}$ | B. | $\frac{3\sqrt{3}+4}{10}$ | C. | $\frac{3+4\sqrt{3}}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{1}{2},1)$ | B. | $(-\frac{1}{2},1)$ | C. | $(\frac{1}{2},-1)$ | D. | $(-\frac{1}{2},-1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com