3.10件產(chǎn)品中有兩件次品,從中任取兩件檢驗(yàn),則至少有1件次品的概率為$\frac{17}{45}$.

分析 由已知中在10件產(chǎn)品中有2件次品,我們可以計(jì)算出從中任意抽取2件產(chǎn)品的所有情況數(shù),及滿足條件至少抽出1件次品的情況數(shù),代入古典概型概率計(jì)算公式,即可得到答案.

解答 解:從10件產(chǎn)品中,任意抽取2件產(chǎn)品,共有C102=45種情況
其中至少抽出1件次品包括正好抽取一件次品,和抽取兩件次品兩類(lèi)
共C81•C21+C22=17情況
故從中任意抽取2件產(chǎn)品,則至少抽出1件次品的概率P=$\frac{17}{45}$.
故答案為$\frac{17}{45}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是等可能事件的概率,古典概型概率公式,其中根據(jù)已知條件,求出基本事件總數(shù)及滿足條件的基本事件個(gè)數(shù),是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=$\frac{1+ln2x}{{x}^{2}}$.
(1)若g(x)=ax2-ln2x-1(a∈R),討論g(x)的零點(diǎn)個(gè)數(shù)
(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|x1lnx1-x2lnx2|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,如輸入的a=2016,b=420,則輸出的a是( 。
A.21B.42C.84D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=-x3+ax在(1,+∞)上是單調(diào)函數(shù),則a的取值范圍為(  )
A.a≤0B.a<0C.a≤3D.a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,圓O與直線x+$\sqrt{3}$y+2=0相切于點(diǎn)P,與x正半軸交于點(diǎn)A,與直線y=$\sqrt{3}$x在第一象限的交點(diǎn)為B.點(diǎn)C為圓O上任一點(diǎn),且滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y為坐標(biāo)的動(dòng)點(diǎn)D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的方程;
(2)若兩條直線l1:y=kx和l2:y=-$\frac{1}{k}$x分別交曲線Γ于點(diǎn)E、F和M、N,求四邊形EMFN面積的最大值,并求此時(shí)的k的值.
(3)已知曲線Γ的軌跡為橢圓,研究曲線Γ的對(duì)稱性,并求橢圓Γ的焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x}$在x=0處取得極值,則a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-3,6),且$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角,則實(shí)數(shù)x的取值范圍是{x|x<4,且x≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若α=-5,則角α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=xex-ax2-x;
(1)若f(x)在x=-1處取得極值,求a的值及f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案