【題目】設(shè)函數(shù)的定義域?yàn)?/span>,并且滿(mǎn)足,且,當(dāng)時(shí),.

1的值;

2判斷函數(shù)的奇偶性,并給出證明;

3如果,求的取值范圍.

【答案】1;2函數(shù)為奇函數(shù);3;

【解析】

試題分析:1利用賦值法,求的值,即令,能求出

2利用函數(shù)奇偶性的定義,判斷函數(shù)的奇偶性,即令,可得到的關(guān)系;

3由奇偶性及,對(duì)進(jìn)行轉(zhuǎn)化,可得到,然后再利用定理證明在R上的單調(diào)性,即可求出的取值范圍

試題解析:

1,則,所以;

2因?yàn)?/span>

所以,

1,

所以,又函數(shù)的定義域?yàn)?/span>,定義域關(guān)于原點(diǎn)對(duì)稱(chēng),

所以函數(shù)為奇函數(shù).

3任取,不妨設(shè),則

因?yàn)楫?dāng)時(shí),

所以,即,所以

所以函數(shù)在定義域R上單調(diào)遞增.

因?yàn)?/span>

所以

所以

因?yàn)?/span>

所以

所以

因?yàn)楹瘮?shù)在定義域R上單調(diào)遞增

所以

從而

所以的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為.

(I)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式cx2+bx+a<0的解集為{x|﹣3<x< },則不等式的解集為ax2+bx+c≥0( )
A.
B.
或x<﹣2}
C.
D.{x|x<﹣3或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)觀(guān)測(cè),某公路段在某時(shí)段內(nèi)的車(chē)流量y(千輛/小時(shí))與汽車(chē)的平均速度v(千/小時(shí))之間有函數(shù)關(guān)系:
(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度v為多少時(shí)車(chē)流量y最大?最大車(chē)流量為多少?(精確到0.01千輛);
(2)為保證在該時(shí)段內(nèi)車(chē)流量至少為10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)“忽如一夜春風(fēng)來(lái)”,遍布了一二線(xiàn)城市的大街小巷.為了解共享單車(chē)在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車(chē)情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車(chē)的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車(chē)的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①△ABC中角A,B,C的對(duì)邊分別是a,b,c,若a>b,則cosA<cosB,cos2A<cos2B;
②a,b∈R,若a>b,則a3>b3
③若a<b,則 ;
④設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若S2016﹣S1=1,則S2017>1.
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明:1﹣ ≤ln(x+1)≤x,其中x>﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}是單調(diào)遞增的數(shù)列,a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線(xiàn)y=f(x)在點(diǎn)x=2處的切線(xiàn)方程;
(2)若過(guò)點(diǎn)A(1,m)(m≠﹣2)可作曲線(xiàn)y=f(x)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案