【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量y(千輛/小時(shí))與汽車的平均速度v(千/小時(shí))之間有函數(shù)關(guān)系:
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度v為多少時(shí)車流量y最大?最大車流量為多少?(精確到0.01千輛);
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

【答案】
(1)解:函數(shù)可化為

當(dāng)且僅當(dāng)v=40時(shí),取“=”,即 千輛,等式成立


(2)解:要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使 ,

即v2﹣89v+1600≤0v∈[25,64]


【解析】(1)將已知函數(shù)化簡(jiǎn),從而看利用基本不等式求車流量y最大值;(2)要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使 ,解之即可得汽車的平均速度的控制范圍
【考點(diǎn)精析】本題主要考查了基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線過點(diǎn), .

(1)若,求函數(shù)的極值點(diǎn);

(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB160°,AB⊥B1C.

(1)求證:平面AA1B1B⊥平面BB1C1C;

(2)AB2,求三棱柱ABC—A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點(diǎn),

)求證: 平面;

)若, ,求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,并且滿足,且,當(dāng)時(shí),.

1的值;

2判斷函數(shù)的奇偶性,并給出證明;

3如果,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)f(x)=x2x-15,且|xa|<1,

(1)解不等式;

(2)求證:|f(x)-f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn), 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案