【題目】某人租用一塊土地種植一種瓜類作物,租期5年,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455kg.當(dāng)年產(chǎn)量低于450kg時,單位售價為12元/kg,當(dāng)年產(chǎn)量不低于450kg時,單位售價為10元/kg.
(1)求圖中a的值;
(2)以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,并以年產(chǎn)量落入該區(qū)間的頻率作為年產(chǎn)量取該區(qū)間中點值的概率,求年銷售額X(單位:元)的分布列;
(3)求在租期5年中,至少有2年的年銷售額不低于5000元的概率.
【答案】
(1)解:由頻率分布直方圖的性質(zhì)得100(a+0.0015+b+0.004)=1,
得100(a+b)=0.45,
由300×100a+400×0.4+500×100b+600×0.15=455,
得300a+500b=2.05,
解得a=0.0010.
(2)解:依題意知X的可能取值為3600、4800、5000、6000,
∵P(X=3600)=0.1,P(X=4800)=0.4,P(X=5000)=0.35,P(X=3600)=0.15,
∴X的分布列為:(8分)
X | 3600 | 4800 | 5000 | 6000 |
P | 0.1 | 0.4 | 0.35 | 0.15 |
(3)解:∵一年的銷售額不低于5000元的概率為0.35+0.15=0.5,
5年中年銷售額不低于5000元的年數(shù)ξ~B(5, ),
∴5年中至少有2年的年銷售額不低于5000元的概率為:
【解析】(1)由頻率分布直方圖的性質(zhì)得100(a+0.0015+b+0.004)=1,300×100a+400×0.4+500×100b+600×0.15=455,由此能求出a.(2)依題意知X的可能取值為3600、4800、5000、6000,分別求出相應(yīng)的概率,由此能求出X的分布列.(3)由已知得5年中年銷售額不低于5000元的年數(shù)ξ~B(5, ),由此能求出5年中至少有2年的年銷售額不低于5000元的概率.
【考點精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點為, 為坐標(biāo)原點, 為橢圓的右頂點, 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點作直線交于、 兩點,射線、分別交于、兩點,記和的面積分別為和,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)我國頒布的《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定》 :空氣質(zhì)量指數(shù)劃分為、、、、和大于300共六個等級,對應(yīng)的空氣質(zhì)量指數(shù)的六個等級,指數(shù)越大,等級越高 ,說明污染越嚴(yán)重,對人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)不大于150時,可以進(jìn)行戶外活動;當(dāng)空氣質(zhì)量指數(shù)為151及以上時,不適合進(jìn)行旅游等戶外活動,下表是某市2017年11月中旬的空氣質(zhì)量指數(shù)情況:
時間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
142 | 141 | 125 | 249 | 129 | 87 | 68 | 106 | 238 | 270 |
(1)該市某市民在上述10天中隨機(jī)選取1天進(jìn)行戶外活動,求該市民選取的這一天恰好不適合進(jìn)行戶外活動的概率;
(2)一名外地游客計劃在上述10天中到市連續(xù)旅游2天求這10天中適合他旅游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[-1,+∞)上的函數(shù)的圖象由一條線段及拋物線的一部分組成.
(1)求的值及的解析式;
(2)若f(x)=,求實數(shù)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 + =1(a>b>0)的左右焦點F1 , F2其離心率為e= ,點P為橢圓上的一個動點,△PF1F2內(nèi)切圓面積的最大值為 .
(1)求a,b的值
(2)若A、B、C、D是橢圓上不重合的四個點,且滿足 , =0,求| |+| |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點,一個焦點為的橢圓被直線截得的弦的中點的橫坐標(biāo)為.
(1)求此橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,且以為對角線的菱形的一個頂點為,求面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.
()求橢圓的方程.
()過定點的動直線,交橢圓于、兩點,試問:在坐標(biāo)平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c.已知a+c=3 ,b=3.
(1)求cosB的最小值;
(2)若 =3,求A的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com