分析 (1)由題意:G(x)=asin(1-x)+lnx,G′(x)=$\frac{1}{x}$-acos(1-x),證明當(dāng)0<x<1,0<a≤1時(shí),G′(x)>0恒成立即可證明結(jié)論.
(2)當(dāng)a=1時(shí),G(x)=sin(1-x)+lnx在(0,1)單調(diào)增,推出sin$\frac{1}{(1+k)^{2}}$=sin[1-$\frac{{k}^{2}+2k}{(1+k)^{2}}$]<ln$\frac{(k+1)^{2}}{{k}^{2}+2k}$,然后證明即可.
(3)化簡(jiǎn)F(x)=ex-mx2-2x+b-2>0即:F(x)min>0,求出導(dǎo)數(shù)F′(x)=ex-2mx-2,二次導(dǎo)數(shù)F″(x)=ex-2m判斷導(dǎo)函數(shù)的符號(hào),推出函數(shù)的單調(diào)性,求出最值,列出不等式,b>($\frac{{x}_{0}}{2}$-1)${e}^{{x}_{0}}$+x0+2,x0∈(0,ln2)恒成立,構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù),求解最值,然后推出最小整數(shù)b的值.
解答 (1)證明:由題意:G(x)=asin(1-x)+lnx,G′(x)=$\frac{1}{x}$-acos(1-x)
當(dāng)0<x<1,0<a≤1時(shí),$\frac{1}{x}$>1,cosx<1,∴G′(x)>0恒成立,
∴函數(shù)G(x)=f(1-x)+g(x)在區(qū)間(0,1)上是增函數(shù);
(2)證明:由(1)知,當(dāng)a=1時(shí),G(x)=sin(1-x)+lnx在(0,1)單調(diào)增
∴sin(1-x)+lnx<G(1)=0,∴sin(1-x)<ln$\frac{1}{x}$(0<x<1)
∴sin$\frac{1}{(1+k)^{2}}$=sin[1-$\frac{{k}^{2}+2k}{(1+k)^{2}}$]<ln$\frac{(k+1)^{2}}{{k}^{2}+2k}$,
∴$\sum_{i=1}^{n}$sin$\frac{1}{(1+k)^{2}}$<ln$\frac{{2}^{2}}{1×3}•\frac{{3}^{2}}{2×4}•…•\frac{{k}^{2}}{(k-1)(k+1)}$=$\frac{k+1}{k+2}$ln2<ln2;
(3)解:由F(x)=g-1(x)-mx2-2(x+1)+b=ex-mx2-2x+b-2>0
即:F(x)min>0又F′(x)=ex-2mx-2,F(xiàn)′′(x)=ex-2m,
∵m<0
則F″(x)>0,∴F′(x),單調(diào)增,又F′(0)<0,F(xiàn)′(1)>0
則必然存在x0∈(0,1),使得F′(x0)=0,
∴F(x)在(-∞,x0)單減,(x0,+∞)單增,
∴F(x)≥F(x0)=${e}^{{x}_{0}}$-mx02-2x0+b-2>0
∵${e}^{{x}_{0}}$-2mx0-2=0,∴m=$\frac{{e}^{{x}_{0}}-2}{2{x}_{0}}$,
∴b>($\frac{{x}_{0}}{2}$-1)${e}^{{x}_{0}}$+x0+2,
又m<0,則x0∈(0,ln2)
∴b>($\frac{{x}_{0}}{2}$-1)${e}^{{x}_{0}}$+x0+2,x0∈(0,ln2)恒成立
令m(x)=($\frac{x}{2}$-1)ex+x+2,x∈(0,ln2)
則m′(x)=$\frac{1}{2}$(x-1)ex+1,m″(x)=$\frac{1}{2}$xex>0,
∴m′(x)在x∈(0,ln2)單調(diào)遞增
又m′(0)=$\frac{1}{2}>0$,
∴m′(x)>0∴m(x)在x∈(0,ln2)單調(diào)遞增,
∴m(x)<m(ln2)=2ln2,∴b>2ln2又b為整數(shù).
∴最小整數(shù)b的值為:2.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的最值的求法,二次導(dǎo)數(shù)的應(yīng)用,考查構(gòu)造法以及轉(zhuǎn)化思想的應(yīng)用,難度比較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | 11 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (-∞,-3)∪(1,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com