若tanα+=,α∈(,),則sin(2α+)的值為( )
A.-
B.
C.
D.
【答案】分析:把已知條件的等式兩邊都乘以tanα,得到關(guān)于tanα的方程,求出方程的解,根據(jù)α的范圍即可得到滿足題意tanα的值,然后把所求的式子利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,再利用同角三角函數(shù)間的基本關(guān)系把分母中“1”化為正弦與余弦函數(shù)的平方和的形式,分子利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),然后給分子分母都除以cos2α,變?yōu)殛P(guān)于tanα的關(guān)系式,把求出的tanα的值代入即可求出值.
解答:解:由tanα+=,去分母得:(tanα-3)(3tanα-1)=0,
解得:tanα=3或tanα=
由α∈(,)得tanα>1,故tanα=舍去,
則sin(2α+)=×
=×=×=-
故選A
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用兩角和的正弦函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)求值,靈活運(yùn)用二倍角的正弦、余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、觀察下列幾個(gè)三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個(gè)恒等式中猜想得到的一個(gè)結(jié)論為
當(dāng)α+β+γ=90°時(shí),tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα+
1
tanα
=
10
3
,α∈(
π
4
,
π
2
),則sin(2α+
π
4
)的值為( 。
A、-
2
10
B、
2
10
C、
5
2
10
D、
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanθ•sinθ<0,且tanθ•cosθ>0,則θ是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tanα=
3
4
,且α是第三象限角.
(1)求sinα與cosα的值.
(2)求tan(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈(0,
π
2
),且sin(α+2β)=
7
5
sinα.
(1)求證:tan(α+β)=6tanβ;
(2)若tanα=3tanβ,求α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案