已知函數(shù)f(x)=x2-2x(x∈[a,b]) 的值域為[-1,3],當a=-1時,b的取值范圍是
 
考點:二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質及應用
分析:由已知函數(shù)的解析式,我們可以判斷出函數(shù)圖象的形狀,單調性及最值,根據(jù)函數(shù)f(x)=x2-4x,x∈[0,a]的值域是[-4,0],易結合二次函數(shù)的圖象和性質得到答案.
解答: 解:∵函數(shù)f(x)=x2-2x的圖象是開口方向朝上,以直線x=1為對稱軸的拋物線;
在區(qū)間[-1,1]上是減函數(shù),在[1,+∞)上是增函數(shù),
且f(-1)=f(3)=3,f(x)min=f(1)=-1,
若定義域為[-1,b],值域為[-1,3],
則1≤b≤3
故答案為:[1,3].
點評:本題考查的知識點是二次函數(shù)的性質,其中根據(jù)已知條件確定二次函數(shù)的圖象和性質,是解答本題的關鍵.基本知識的看.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
|lnx|,x>0
ex,x≤0
(e為自然對數(shù)的底數(shù)),已知函數(shù)g(x)=f(x)-m有兩個零點,則實數(shù)m的取值范圍為( 。
A、0<m<1B、0<m≤1
C、m>1D、m≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4cosω•sin(ωx-
π
6
)+1(ω>0)的最小正周期是π.
(Ⅰ)求f(x)的單調遞增區(qū)間;
(Ⅱ)已知△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且f(A)=2,b+c=
3
3
2
,a=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=2x-x3在x=-1處的切線方程為( 。
A、x-y+2=0
B、x+y-2=0
C、x+y+2=0
D、x-y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-1,1)上的奇函數(shù).
(1)若f(x)在(-1,1)上單調遞減,且f(1-a)+f(1-2a)<0.求實數(shù)a的取值范圍.
(2)當0<x<1時,f(x)=x2+x=1,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若-9、a、-l成等差數(shù)列,-9、m、b、n、-1成等比數(shù)列,則ab=( 。
A、15B、-l5
C、±l5D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角函數(shù)f(x)=Acos(ωx+φ)+b(A>ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)若函數(shù)g(x)=f(x-
π
6
)+4cosx,試求函數(shù)g(x)在x∈[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)=
x
.g(x)=
f(x),x≥0
f(-x),x<0
,
(1)求當x<0時,函數(shù)f(x)的解析式,并在給定直角坐標系內(nèi)畫出f(x)在區(qū)間[-5,5]上的圖象;(不用列表描點)
(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A=N*,B={x|x是正奇數(shù)},映射f:A→B使A中任一元素a與B中元素2a-1相對應,則與B中元素17對應的A中元素為( 。
A、17B、9C、5D、3

查看答案和解析>>

同步練習冊答案