【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.

【答案】
(1)解:函數(shù)f(x)=x3﹣9x的導數(shù)為f′(x)=3x2﹣9,

f(0)=0,f′(0)=﹣9,直線l的方程為y=﹣9x,

設l與曲線y=g(x)相切于點(m,n),

g′(x)=6x,g′(m)=6m=﹣9,解得m=﹣

g(m)=﹣9m,即g(﹣ )= +a= ,

解得a= ;


(2)解:記F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,

F′(x)=3x2﹣6x﹣9,

由F′(x)=0,可得x=3或x=﹣1.

當x<﹣1時,F(xiàn)′(x)>0,F(xiàn)(x)遞增;

當﹣1<x<3時,F(xiàn)′(x)<0,F(xiàn)(x)遞減;

當x>3時,F(xiàn)′(x)>0,F(xiàn)(x)遞增.

可得x=﹣1時,F(xiàn)(x)取得極大值,且為5﹣a,

x=3時,F(xiàn)(x)取得極小值,且為﹣27﹣a,

因為當x→+∞,F(xiàn)(x)→+∞;x→﹣∞,F(xiàn)(x)→﹣∞.

則方程f(x)=g(x)有三個不同實數(shù)解的等價條件為:

5﹣a>0,﹣27﹣a<0,

解得﹣27<a<5


【解析】(1)求出f(x)的導數(shù)和切線的斜率和方程,設l與曲線y=g(x)相切于點(m,n),求出g(x)的導數(shù),由切線的斜率可得方程,求得a的值;(2)記F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,求得導數(shù)和單調(diào)區(qū)間,極值,由題意可得方程f(x)=g(x)有三個不同實數(shù)解的等價條件為極小值小于0,極大值大于0,解不等式即可得到所求范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有兩臺不同機器AB生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學期望;

完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計

良好以上含良好

合格

合計

已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認為該工廠會仍然保留原來的兩臺機器嗎?

附:獨立性檢驗計算公式:

臨界值表:

k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當x>1時,f(x)+ <0恒成立,求實數(shù)k的取值范圍;
(3)證明:當n∈N* , 且n≥2時, + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標準方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點,點F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求證:DE∥平面A1C1F;

(2)求證:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E:的焦距為2,一條準線方程為x=,A,B分別為橢圓的右頂點和上頂點,點P,Q在的橢圓上,且點P在第一象限.

(1)求橢圓E的標準方程;

(2)若點P,Q關于坐標原點對稱,且PQ⊥AB,求四邊形ABCD的面積;

(3)若AP,BQ的斜率互為相反數(shù),求證:PQ斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知,且,求證:;

(2)解關于的不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 方程 有兩個不相等的負實根,

命題 不等式 的解集為 ,

(1)若為真命題,求 的取值范圍.

(2)若 為真命題, 為假命題,求 的取值范圍.

查看答案和解析>>

同步練習冊答案