【題目】求滿足下列條件的橢圓或雙曲線的標準方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

【答案】(1)(2)

【解析】

(1)設出橢圓的標準方程,根據(jù)下焦點即可得知上焦點坐標,由橢圓定義即可求得a,結合焦距即可求得b,進而得到橢圓的標準方程。

(2)因為過右焦點F作垂直,即可表示出A、B兩點的坐標及長度,進而根據(jù)求得a、b的關系,結合雙曲線中a、b、c的關系即可求得a、b的值,進而求得雙曲線的標準方程。

解:(1)設橢圓的標準方程為,

上焦點為,下焦點為

根據(jù)橢圓的定義知,,即

所以,

因此,橢圓的標準方程為

(2)設雙曲線的標準方程為,

帶入雙曲線方程,得,所以.

,得.

所以,

所以雙曲線的標準方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,點的中點

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+alnx(a∈R).
(1)當a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)﹣2x+2x2 , 討論函數(shù)g(x)的單調(diào)性;
(3)若(2)中函數(shù)g(x)有兩個極值點x1 , x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的菱形, .

(1)求證:平面平面;

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,A是函數(shù)f(x)=2x的圖象上的動點,過點A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點B,若函數(shù)f(x)=2x的圖象上存在點C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點.函數(shù)f(x)=2x上的好位置點的個數(shù)為(

A.0
B.1
C.2
D.大于2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax+a).
(1)求f(x)的單調(diào)區(qū)間;
(2)求證:當a≥4時,函數(shù)f(x)存在最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓軸相切于點,且被軸所截得的弦長為,圓心在第一象限.

(Ⅰ)求圓的方程;

(Ⅱ)若點是直線上的動點,過作圓的切線,切點為,當△的面積最小時,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,點 , 分別是橢圓 的左頂點和左焦點,點 上的動點,若 是常數(shù),則橢圓 的離心率為________________

查看答案和解析>>

同步練習冊答案