點P是以F1,F(xiàn)2為焦點的橢圓上的一點,過焦點F2作∠F1PF2的外角平分線的垂線,垂足為M點,則點M的軌跡是


  1. A.
    拋物線
  2. B.
    橢圓
  3. C.
    雙曲線
  4. D.
D
分析:P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,延長F2M交F1延長線于Q,可證得PQ=PF2,且M是PF2的中點,由此可求得OM的長度是定值,即可求點M的軌跡的幾何特征.
解答:解:由題意,P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,延長F2M交F1延長線于Q,得PQ=PF2,
由橢圓的定義知PF1+PF2=2a,故有PF1+PQ=QF1=2a,
連接OM,知OM是三角形F1F2Q的中位線
∴OM=a,即點M到原點的距離是定值,由此知點M的軌跡是圓
故選D.
點評:本題考查求軌跡方程,關鍵是證出OM是中位線以及利用題設中所給的圖形的幾何特征求出QF1的長度,進而求出OM的長度,再利用圓的定義得出點M的軌跡是一個圓.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P是以F1、F2為左、右焦點的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為( 。
A、
2
B、
3
C、
5
D、
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是以F1,F(xiàn)2為焦點的橢圓上一點,且∠PF1F2=α,∠PF2F1=2α,若α=
π6
,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)點P是以F1,F(xiàn)2為焦點的橢圓上的一點,過焦點F2作∠F1PF2的外角平分線的垂線,垂足為M點,則點M的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1
上一點,滿足PF1⊥PF2,且|PF1|=2|PF2|,則此雙曲線的離心率為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•寶坻區(qū)一模)已知點P是以F1、F2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率是( 。

查看答案和解析>>

同步練習冊答案