分析 由1-$\frac{1}{1+2+3+…+n}$=1-$\frac{2}{n(n+1)}$=$\frac{n(n+1)-2}{n(n+1)}$,得Tn=$\frac{4}{6}×\frac{10}{12}×\frac{18}{20}×\frac{28}{30}×…×\frac{n(n+1)-2}{n(n+1)}$,由此依次求出Tn的前四項(xiàng),由此能求出結(jié)果.
解答 解:∵$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$,
∴1-$\frac{1}{1+2+3+…+n}$=1-$\frac{2}{n(n+1)}$=$\frac{n(n+1)-2}{n(n+1)}$,
∴${T_n}=({1-\frac{1}{1+2}})({1-\frac{1}{1+2+3}})•…•({1-\frac{1}{1+2+3+…+n}})$
=$\frac{4}{6}×\frac{10}{12}×\frac{18}{20}×\frac{28}{30}×…×\frac{n(n+1)-2}{n(n+1)}$,
∴T1=$\frac{4}{6}$=$\frac{2+2}{3×2}$,
T2=$\frac{4}{6}×\frac{10}{12}$=$\frac{2}{3}×\frac{5}{6}$=$\frac{3+2}{3×3}$,
T3=$\frac{5}{9}×\frac{18}{20}$=$\frac{4+2}{3×4}$,
T4=$\frac{1}{2}×\frac{28}{30}$=$\frac{5+2}{3×5}$,
…
由此猜想,Tn=$\frac{(n+1)+2}{3(n+1)}$.
故答案為:$\frac{(n+1)+2}{3(n+1)}$.
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意歸納法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (-∞,2) | C. | (-2,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<m<3 | B. | 1 | C. | 1或2 | D. | 0或1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com