分析 由2n=64,解得n=6.利用通項公式即可得出.
解答 解:由2n=64,解得n=6.
$(\frac{\sqrt{x}}{2}-\frac{2}{\sqrt{x}})^{6}$的通項公式Tr+1=${∁}_{6}^{r}(\frac{\sqrt{x}}{2})^{6-r}$$(-\frac{2}{\sqrt{x}})^{r}$=22r-6(-1)r${∁}_{6}^{r}$x3-r.
令3-r=2,解得r=1.
∴展開式中x2項的系數(shù)為$-{2}^{-4}{∁}_{6}^{1}$=-$\frac{3}{8}$.
故答案為:$-\frac{3}{8}$.
點評 本題考查了二項式定理的性質(zhì)及其通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在區(qū)間(-2,1)內(nèi)f(x) 是增函數(shù) | B. | 在區(qū)間(1,3)內(nèi)f(x) 是減函數(shù) | ||
C. | 在區(qū)間(4,5)內(nèi)f(x) 是增函數(shù) | D. | 在x=2時,f(x)取到極小值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{10}$ | C. | 3 | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com