【題目】設橢圓的左、右交點分別為, ,點滿足

)求橢圓的離心率

)設直線與橢圓相交于 兩點,若直線與圓相交于 兩點,且,求橢圓的方程.

【答案】(1) ;(2) .

【解析】試題分析:()直接利用|PF2|=|F1F2|,對應的方程整理后即可求橢圓的離心率e;()先把直線PF2與橢圓方程聯(lián)立求出A,B兩點的坐標以及對應的|AB|兩點,進而求出|MN|,再利用弦心距,弦長以及圓心到直線的距離之間的等量關系,即可求橢圓的方程

試題解析:()

因為,則,

,有,即(舍去)或

所以橢圓的離心率為

() 解.因為,所以.所以橢圓方程為

直線的斜率,則直線的方程為

兩點的坐標滿足方程組

消去并整理得.則

于是 不妨設,

所以

于是

圓心到直線的距離

因為,所以,即,

解得(舍去),或.于是,

所以橢圓的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是直角梯形,,平面ABCD,

SC與平面ASD所成的角余弦值;

求平面SAB和平面SCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={xR|x2axb=0},B={xR|x2cx+15=0},AB={3},AB={3,5}.

(1)求實數(shù)ab,c的值;

(2)設集合P={xR|ax2bxc≤7},求集合P∩Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點在拋物線 上,直線 與拋物線交于, 兩點,且直線, 的斜率之和為-1.

(1)求的值;

(2)若,設直線軸交于點,延長與拋物線交于點,拋物線在點處的切線為,記直線, 軸圍成的三角形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是雙曲線C的左,右焦點,O是坐標原點C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求證:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且

(1)求雙曲線的兩條漸近線的夾角;

(2)過點的直線和雙曲線的右支交于兩點,求的面積的最小值;

(3)過雙曲線上任意一點分別作該雙曲線兩條漸近線的平行線,它們分別交兩條漸近線于、兩點,求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),

(1)求實數(shù)m的值;

(2)判斷函數(shù)的單調性并用定義法加以證明;

(3)若函數(shù)上的最小值為,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案