【題目】已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且.
(1)求雙曲線的兩條漸近線的夾角;
(2)過點的直線和雙曲線的右支交于、兩點,求的面積的最小值;
(3)過雙曲線上任意一點分別作該雙曲線兩條漸近線的平行線,它們分別交兩條漸近線于、兩點,求平行四邊形的面積.
【答案】(1)(2)(3)
【解析】
(1)首先根據(jù)雙曲線的定義,結(jié)合題中所給的角的大小,求得,從而求得b的值,進而得到雙曲線的漸近線方程,利用直線的方向向量所成的角,求得兩條漸近線的夾角余弦值,利用反余弦求出結(jié)果;
(2)設出直線的方程,與雙曲線的方程聯(lián)立,利用三角形的面積公式,結(jié)合函數(shù)的單調(diào)性,求得最值,得到結(jié)果;
(3)根據(jù)所學的知識將四邊形的面積表示出來,進而求得結(jié)果.
(1)由題意,得,
,
∴,∴雙曲線的方程為,
∴,∴;
(2)【注:若設點斜式,需補上斜率不存在的情況】
設,、,
將直線的方程代入雙曲線方程,消去,得,
則,得,
,
令,,則,
其中在上單調(diào)遞減,
∴在上單調(diào)遞增,
∴當時,取得最小值,此時,的方程為;
(3)設,其中
方法一:設,與聯(lián)立,
可求出,
由三階行列式表示的三角形面積公式
可得
.
方法二:如圖,,
設到和的距離為、,
則,,
∴
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)滿足,的虛部為,且在復平面內(nèi)對應的點在第二象限.
(1)求復數(shù);
(2)若復數(shù)滿足,求在復平面內(nèi)對應的點的集合構(gòu)成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右交點分別為, ,點滿足.
()求橢圓的離心率.
()設直線與橢圓相交于, 兩點,若直線與圓相交于, 兩點,且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,兩焦點分別為,右頂點為, .
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設過定點的直線與雙曲線的左支有兩個交點,與橢圓交于兩點,與圓交于兩點,若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,斜率為1的直線l交橢圓于A、B兩點,且線段AB的中點坐標為.
求橢圓的方程;
若P是橢圓與雙曲線在第一象限的交點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.
(1)要使矩形的面積大于平方米,則的長應在什么范圍內(nèi)?
(2)當的長度是多少時,矩形花壇的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】意大利數(shù)學家列昂納多·斐波那契是第一個研究了印度和阿拉伯數(shù)學理論的歐洲人,斐波那契數(shù)列被譽為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com